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Preface 

 
The protein folding problem remains a major unsolved problem in structural biology. In 

one aspect it deals with the mapping of protein primary sequences to their three 

dimensional folds, referred to as the second genetic code. Two factors which condition 

the isomorphism between sequence and fold, are (1) the pattern of hydrophobicities 

embedded in the polypeptide chain and (2) the packing of amino acid side chains to give 

densely packed protein interiors. Several groups have attempted to represent the internal 

architecture in proteins as some kind of network. Previous studies on protein contact 

networks based on the proximity of interacting point-atoms have elucidated some basic 

properties of such networks. The current study is based on shape complementarity and 

overlap of interacting side-chain surfaces which essentially extends the ‘Jigsaw Puzzle’ 

model in the domain of protein contact networks. The study has been effective in 

characterizing and classifying the topological patterns found within the protein interiors 

along with the emergence of special packing motifs like closed triplets. Chapter 2 deals 

with these insights.  

 

One of the key concepts of bimolecular recognition is complementarity between 

interacting surfaces which is said to have a dual aspect (1) surface complementarity 

arising due to the steric fit of closely packed atoms in van der Waals contact and (2) 

electrostatic complementarity mediated by long range electric fields due to charged or 

partially charged atoms. Although the term ‘complementarity’ naturally lends itself to 

inter-protein association, the current study attempts to extend the concept into protein 

interiors. In spite of the differences in physicochemical features of interfaces and interior 

atoms, the concept has been found to be fruitful in bridging the gap between binding and 

folding. Chapters 3 to 5 deals in great detail to the above research proposal. In this 

regard, a novel graphical validation tool for protein structures has been developed and 

made avaialeble as a standalone suite of programs in the public domain 

(http://www.saha.ac.in/biop/www/sarama.html).  

 

Designing novel folds and hydrophobic cores is another well-posed research problem in 

structural biology. There are examples of successful full sequence as well as core design 

for small proteins like ubiquitin. The current study proposes a computational method to 

redesign the hydrophobic core of a beta-barrel protein, cyclophilin based on the concept 

of complementarity discussed in Chapter 6.  

 

The Appendix is divided into two parts. The first part (Appendix I) deals with a 

molecular dynamic simulation of cyclophilin and a novel analysis scheme for dynamic 

contact networks which can elucidate evolutionary relationships amongst members of the 

same fold. The second part (Appendix II) analyzes the geometry and electrostatics of salt 

bridges within native protein interiors.  

 

A part of the results described in this thesis have already been reported in the following 

publications. 
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Abbreviations 

 

 
APCN : All atom Point Contact Network 

 
ASCN : All atom Surface Contact Network 

Bur : Burial / Burial ratio 

CP : Complementarity Plot 

CS : Complementarity Score 

dnet : Network Distance  

 
Em : Electrostatic Complementarity 

µ : Mean 

 
Ov   : Overlap 

Pd : Packing Density 

Pen    : Penalty 

Pgrid : Grid probability  

 

φs : Swivel Angle 

Res : Amino Acid Residue Identity  

 

rGb : Residue given burial (Accessibility Score) 

RMSD : Root Mean Square Deviation 
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Se : Sequence Entropy 

 : Standard Deviation 

Sm : Shape Complementarity 

snet : Network Similarity 
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1. Background  
One of the objectives of the ‘protein folding problem’ is to decipher the ‘second 

genetic code’ which is to correlate the linear amino acid primary sequence to the three 

dimensional structure of the protein molecule. Generally, the protein folding problem can 

be divided into three inter-related though distinct sub-problems: i) the thermodynamic 

problem of how the three dimensional structure of a folded polypeptide chain remains 

thermally stable as a consequence of inter-atomic forces in both the protein molecule and 

the surrounding solvent ii) the kinetic problem of how a protein can converge to its native 

fold in characteristic time scales and iii) the computational problem of how to predict the 

native three dimensional structure from its amino acid sequence  (Dill et al, 2007). 

 

         With the advent of fast computers, computational protein structure prediction has 

received a great deal of attention for several decades, also driven by its many industrial 

and biomedical applications. If successful, it is by far much simpler and less expensive to 

predict protein structures computationally (if the procedure can be completed in 

reasonable computer time) compared to cumbersome experiments in structural biology 

involving X-ray crystallography, NMR or cryo-electron microscopy. Recent statistics 

show that there are currently ~28 million protein sequences deposited in the UniProtKB 

database (Bairoch et al., 2005) (http://www.ebi.ac.uk/swissprot) whereas the 

corresponding number of protein structures in the Protein Data Bank (PDB) (Berman et 

al., 2000) (http://www.rcsb.org/pdb) is only 85602 (dated 30.07.2013), which is about 

0.3% of the total number of available protein sequences. In the post genomic era (Figure 

1) this mismatch between the number of available sequences and the number of 

experimentally derived three dimensional structures appears to be increasing. Thus, there 

is an urgent need for robust computer based algorithms to accurately predict three 

dimensional protein structures.   
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Figure 1. Growth in the number of protein structures (black squares) and sequences (red 
circles) in time.  
 

1.1. Protein structure prediction 

Broadly speaking, structure prediction methods fall into two classes: physics-

based (Oldziej et al., 2005) and bioinformatics- or knowledge-based, (Simons et al., 

1997; Zhang and Skolnick, 2004a) where the latter depends on the analysis of databases 

in order to design pseudo energy functions and derive probability distributions or 

propensities with regard to biophysical, geometrical features of natively folded structures. 

On the other hand, purely physics-based approaches rely on the accurate understanding of 

the physical mechanisms underlying the protein folding process. For a pair of 

homologous proteins with greater than 35% sequence identity, one (with an available 

experimental atomic structure) can be used as a template to derive an atomic model of the 

other. Many web-servers have been developed using different template-based modeling 

(TBM) techniques such as, GenTHREADER (Jones, 1999), FUGUE (Shi et al., 2001), 
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ORFeus (Ginalski et al., 2003b), PROSPECTOR (Skolnick et al., 2004) and MUSTER 

(Wu and Zhang, 2008). However, in the absence of appropriate templates one has to 

resort to ab initio, de novo or free modeling methods. In contrast to ab initio modeling, de 

novo methods are allowed to incorporate prior statistical information, prediction of 

secondary structures, fragment assembly etc. in their algorithms.  

 

  Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a 

biannual gathering of experts in the field of protein structure prediction taking place since 

1994 (Moult et al., 1995). The ranking results show that TBM and bioinformatics-based 

methods are far superior in both speed and prediction accuracy than ab-initio or physics-

based methods (Moult et al., 2011). To date, the most efficient and accurate knowledge-

based method appears to be homology modeling (Sali and Blundell., 1993), which 

generally predicts unknown structures to within 3 Å (Cα-RMSD) of the experimentally 

determined target, for homologous pairs with greater than 30% sequence identity. On the 

other end of the spectrum, ab initio methods for small single domain proteins of less than 

90 amino acids appear to be moderately successful with algorithms predicting structures 

within ~2 to 6 Å of the native (Bradley et al., 2005; Dill et al., 2007). Thus, there is 

considerable scope for the improvement of ab initio methods. Although TBM methods 

can generate reasonably accurate models, they generally do not give additional insight 

into the protein folding process, which could probably come from the successful 

implementation of ab initio methods.  

  

1.2. ab-inito and knowledge-based methods 

In ab initio modeling, a suitable energy function is first designed and a 

conformational search is conducted guided by this energy function, leading to the 

generation of a number of possible conformations (decoys) from which the final models 

are eventually selected. The power and validity of all ab-initio methods depend on (i) the 

intricate coupling of the energy function and the search procedure, (ii) the ability of the 

energy function to identify the structure closest to its most thermodynamically stable state 

compared to the decoys, (iii) the speed and efficiency of the conformational search 
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protocol to identify the low-energy states and (iv) the accurate selection of native-like 

models from a pool of decoys. Energy functions are again classified into either physics- 

or knowledge-based functions. In a physics-based energy function, atomic interactions 

are taken into account either by means of quantum mechanics or the use of a 

compromised force field with a large number of selected atom types (Hagler et al., 1974, 

Weiner et al., 1984). Molecular dynamics simulations based on all atom physics-based 

force fields (e.g., AMBER (Weiner et al., 1984; Cornell et al., 1995), OPLS (Jorgensen 

and Tirado-Rives, 1988), CHARMM (Brooks et al., 1983) etc.) is generally the method 

of choice for conducting a conformational search. However, MD-based ab-initio protein 

structure predictions usually take months or years to complete even for small proteins. An 

instructive example was the success of Pande and coworkers (Zagrovic et al., 2002) 

(http://folding.stanford.edu/) to fold the villin headpiece (consisting of 36 residues) to 1.7 

Å (Cα RMSD w.r.t experimental target) with a total simulation time of 300 ms (~ 1000 

CPU years). However, these methods are far from being routinely used for the structure 

prediction of typical-size proteins (~100-300 residues) for reasons of speed and accuracy.  

 

On the other hand, knowledge-based potentials are empirical in nature, 

statistically derived from database analysis and can be divided into two types (Skolnick 

et al., 2006) : those containing sequence-independent terms e.g., hydrogen bonding, local 

backbone stiffness etc. (Zhang et al., 2003) and those with sequence dependent terms, 

e.g. pair-wise residue contact potential (Skolnick et al., 1997), distance dependent atomic 

contact potential (Samudrala and Moult., 1998; Shen and Sali., 2006), and secondary 

structure propensities (Zhang et al., 2003; Zhang and Skolnick., 2005). Most 

knowledge-based energy functions are coupled to Monte Carlo (MC) conformational 

search procedures e.g., TASSER (Zhang and Skolnick., 2004b), I-TASSER (Wu et al., 

2007) and have much faster runtime (hours) compared to physics-based potentials. One 

of the most successful and popularly used ab initio method (in the knowledge-based / MC 

category) has been the ‘Fragment Assembly’ (Bowie and Eisenberg., 1994) approach 

which assembles small fragments (mainly 9-mers) taken from the PDB. An analogous 

approach was implemented in ROSETTA (Simons et al., 1997) by Baker and coworkers, 
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which was remarkably successful for the free modeling (FM) targets in CASP 

experiments. Latter, substantial improvements were made in the ROSETTA method 

(Bradley et al., 2005; Das et al., 2007) which also involved several physics-based 

energy terms (van der Waals interactions, pair wise solvation free energy, and an 

orientation-dependent hydrogen-bonding potential). The methodology initially generates 

reduced Cβ conformations specified with heavy backbone and thereafter, an all-atom 

refinement is performed on a set of selected low-resolution models using the above 

mentioned physics-based energy terms. Multiple rounds of MC minimization are then 

carried out for the conformational search (Li and Scheraga., 1987). One of the most 

notable successes of ROSETTA has been the blind prediction of an ab initio target 

(T0281 from CASP6, 70 residues) whose Cα-RMSD from its crystal structure was 1.6 Å 

(Bradley et al., 2005). In recent years, extensive samplings are being carried out using 

the worldwide distributed computing network of Rosetta@home 

(http://boinc.bakerlab.org/rosetta/) allowing about 500,000 CPU hours for each target 

domain. However, it should be noted that comparing the performance of different 

prediction methods is made particularly difficult as different algorithms are tested on 

different proteins of choice (by different research groups) rather than a standard protein 

test set (Helles, 2008).   

 

2. Fold Recognition 

Fold recognition is a structure prediction of comparable lesser complexity 

wherein the main-chain coordinates are given and the problem is to select side-chain 

sequences (which could include side–chain conformations) consistent with and 

supportive of a given native fold. One of the prime concerns of the ‘fold recognition’ 

problem is to correctly identify the fold, which happens to be the same, for a pair of 

sequences with low identity upon alignment (<30%, falling in the twilight zone) amidst a 

pool of random sequences. This is especially important for folds with a large diversity in 

sequences and functions among their members (e.g., immunoglobulin, Rossman-like, 

Tim barrel, globin fold etc.). A further refinement of the fold recognition problem could 

be to solve for the correct set of  angles determining side-chain conformations. 
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Threading techniques (Brayant and Lawrence., 1993; Jones, 1999) in fold recognition 

are especially useful in selecting possible tertiary structures, for a rapidly expanding pool 

of genomic sequences with no identifiable evolutionary relationships. Scoring functions 

discriminating the correct sequence – structure match from decoys, also finds widespread 

use in protein folding simulations (Park and Levitt., 1996), ab-initio structure 

predictions (Samudrala and Moult., 1998; Kinch et al., 2011) and the selection of the 

best model from a repertoire of NMR structures for molecular replacement calculations 

(Huang et al., 1996). Such scoring functions are again  physics-based that is based on 

atomic interactions modeled by appropriate force fields or knowledge-based, formulated 

by including parameters which have been extracted from a database of experimental 

structures. Knowledge-based scoring functions are probably preferred due to the ease 

with which they lend themselves to efficient computation over large decoy sets and the 

last decade has witnessed considerable improvements in both their performance and 

variety. Several knowledge based discriminative scoring functions are now available, 

based on the analysis of pair-wise amino acid interactions by techniques of statistical 

thermodynamics (Sippl, 1995; Arab et al., 2010), weighted matching of sequence 

profiles generated from multiple sequence alignment (Yang et al., 2011), use of torsion 

angle profile and profile based gap penalties (Zhang et al., 2008), average solvent 

accessible surface areas of residues in correctly folded proteins (Bahadur and 

Chakrabarti., 2009), extraction of correlated mutations (Sadowski et al., 2011), use of 

fold-specific position-specific scoring matrices (Hong et al., 2011), incorporation of 

local structural preference potential (Hu et al., 2011) and on the structural features of 

hydrophobic cores (Huang et al., 1996). Most scoring functions easily distinguish the 

native structure from decoys composed of random sequences and the current challenge is 

to identify the native structure from a pool of decoys which are native-like both in terms 

of sequence and/or certain three dimensional features. Several such datasets are now 

available composed of numerous decoy models generated by highly diverse 

computational methods, most of which take special care to optimize the rotamer 

arrangement and minimize steric clashes. Of these, PROSTAR (Holm and Sander, 

1992), Park and Levitt decoy sets (Park and Levitt., 1996), Rosetta (Tsai et al., 2003) 
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and several others effectively challenge scoring functions to prove their mettle. However, 

the most challenging test for these scoring functions is perhaps to identify the native 

structure among its best-predicted near-native models submitted by different groups in 

CASP. On the other hand, PREFAB (http://www.drive5.com/muscle/prefab.htm) (Edgar, 

2004) is a widely used database to identify pairs of proteins with low (<30%) sequence 

identities (upon alignment) although belonging to the same fold.  

 

There are both single as well as multiple decoy sets. In single-decoys, a successful 

hit refers to the correct discrimination of the native from its decoy counterpart whereas in 

case of multiple decoys, assessment of the discriminatory ability of a scoring function is 

given by a ‘Z-score’ (associated with a corresponding rank of the native structure). 

Missfold (Holm and Sander, 1992), Pdberr (Branden and Jones, 1990), sgpa (Avbelj 

et al., 1990) are common examples of single decoys generated with different strategies. 

‘Missfold’ consists of 26 pairs of proteins with identical chain length but different 

sequences and conformations. The ‘Pdberr’ decoy set consists of three correctly solved 

X-ray crystal structures along with their erroneous decoy counterparts, whereas 'sgpa' 

contains the experimental structure of Streptomyces griseus Protease A (2SGA) and its 

two corresponding decoys, generated by molecular dynamics simulations. A relative 

success rate is compared amongst different knowledge-based scoring functions in the 

following table (Table 1). As can be seen, most functions perform equally well in these 

single decoy sets.  
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Table 1: Comparison in the performances of different knowledge-based scoring 
functions on single decoy sets: The functions include Rs, Rp (Bahadur and 
Chakrabarti., 2009), RAPD, CDF (Samudrala and Moult, 1998), Surfield (Arab et 
al., 2010), atomic knowledge based potential (AKBP) (Lu and Skolnick, 2001), Residue 
Contact Potential (RCP) (Skolnick et al., 2000). The number of successful hits / total 
number of trials are tabulated. Data obtained from Table 3 of Bahadur and 
Chakrabarti., 2009.  
 

Scoring Functions 
 

Misfold Pdberr and sgpa 

Rs 24/24 5/5 
Rp 20/24 5/5 

RAPD 24/24 5/5 
CDF 19/24 5/5 

Surfield 23/23 - 
AKBP 24/24 5/5 
RCP 24/24 4/5 

 

Among different multiple decoy sets, ‘4-state reduced’ (Park and Levitt, 1996) 

and Fisa (Simons et al., 1997) are the two most common examples. The former consists 

of 7 sequences (medium in chain length : 54-75 residues), each with nearly 600-700 

decoys (with sequences identical to the native) that include structures with RMSD (Cα 

atoms) ranging from 0.8 to 9.4 Å from the native whereas ‘Fisa’ (Simons et al., 1997) 

contains 4 small (43-76 residues) all-α proteins with 500 decoys for each set. Different 

knowledge-based scoring functions are tested and compared in these multiple decoys. 

One of the most successful approaches appears to be the design of functions based on 

non-interacting ideal gas reference state assuming that atoms can be modeled as ideal gas 

molecules. Distance Scaled Finite Ideal gas Reference State or DFIRE (Zhang et al., 

2004) is one such scoring function based on the subsequent assumption that the 

distribution of pairwise interaction follows the uniform distribution in the whole volume 

of the protein. Discrete Optimized Protein Energy function or DOPE (Shen and Sali, 

2006) is another where no interacting atoms are present in a homogeneous sphere as 

reference state. Both these functions seem to perform better than most other functions in 

multiple decoys (Table 2).  
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Table 2: Comparison in the performances of different knowledge based scoring 
functions on multiple decoy sets: The functions include DFIRE (Zhang et al., 2004), 
Rosetta (Misura et al., 2006), ModPipe-Pair (MPP), ModPipe-Surf (MPS) (Melo et al., 
2002), TE13, LHL (Li et al., 2003), Force Model (FM) (Mirzaie et al., 2009), DOPE 
(Shen and Sali, 2006), MJ (Miyazawa and Jernigan, 1996), Rs, Rp (Bahadur and 
Chakrabarti., 2009). All entries in the table refer to the rank of the native structure as 
detected by the corresponding method. Part of the table has been reproduced from Arab 
et al., 2011.  
 

Decoy 
Set 

PDB ID DFIRE Rosetta MPP MPS TE13 LHL FM DOPE MJ Rs Rp 

4state 
reduced 

1CTF 1 1 1 1 1 1 1 1 1 1 1 
1R69 1 2 1 17 1 1 8 1 1 1 19 
1SN3 1 1 1 7 6 1 23 1 2 5 23 
2CRO 1 5 1 103 1 1 4 1 1 1 1 
3ICB 4 6 15 33 - 5 2 1 - 1 6 
4PTI 1 1 1 71 7 1 13 1 3 1 1 

4RXN 1 1 1 18 16 51 85 1 1 1 1 
Fisa 1FC2 254 158 491 1 - - 1 357 - - - 

1HDD-C 1 90 293 18 - - 1 1 - - - 
2CRO 1 26 11 146 - - 1 1 - - - 
4ICB 1 1 196 2 - - 1 1 - - - 

 

As has been mentioned, probably the most challenging test for a fold-recognition 

function is to be able to rank the native targets amongst the CASP models. A thorough 

comparison (Table 3) using CASP7 models shows that functions based on average 

solvent accessibilities (Bahadur and Chakrabarti., 2009) performs the best, though, as 

can be seen from the percentage of native structures correctly identified, there is 

substantial room for improvement.  
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Table 3.  Znat corresponds to the average Z-score of the native structure. Percentage of 
the native structure with rank 1 or within rank 10 from among all the solutions submitted 
in CASP7 are tabulated. The functions include RAPDF (Samudrala and Moult, 1998), 
DFIRE (Zhang et al., 2004), QMEAN3 (Benkert, 2008) and Rp , Rs (Bahadur and 
Chakrabarti., 2009). Data obtained from Table 6 of Bahadur and Chakrabarti., 2009.  
 

 % of native structure 

Method Znat Rank1 Rank10 

RAPDF -2.09 57.89 81.05 

DFIRE -1.25 62.11 75.79 

QMEAN3 -2.27 62.11 78.95 

Rp 1.69 53.52 91.55 

Rs 2.17 71.83 98.59 

 

A part of this thesis describes the design and utility of new scoring functions for 

fold recognition (discussed in detail in Chapter 3) tested on several state-of-the-art decoy 

sets and compared with the best knowledge-based functions currently available in the 

literature. These functions were built utilizing the concept of ‘complementarity’ in 

bimolecular recognition which is briefly reviewed in the following section. 

3. Complementarity 

In molecular recognition the term ‘complementarity’ is used to describe the match 

between two interacting molecular surfaces and is supposed to have a dual aspect, 1) 

shape complementarity arising out of the steric fit between closely packed interfacial 

atoms in van der Waal’s contact and 2) electrostatic complementarity mediated by long 

range electric fields due to charged or partially charged atoms. Within the domain of 

biomolecular recognition, the concept appears to be particularly appealing for protein-

protein interfaces due to their large interfacial surface area (~1600 Å2) buried upon 

complexation (Lo Conte et al., 1999) which is possible due to the match between the 

interacting surfaces in terms of both shape and chemical properties. However, in case of 

small molecule ligands  binding to proteins, significant diversity in conformation, 
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variation in shape and physicochemical environments experienced by the identical ligand 

in binding pockets of unrelated proteins have been demonstrated (Stockwell and 

Thronton, 2006; Kahraman et al., 2007; Kahraman et al., 2010).  

 

3.1. Shape Complementarity 

Early methods for computing shape complementarity at protein-protein interfaces 

include the estimation of buried surface area (Chothia, 1974), paucity of buried water 

molecules (Chothia and Janin, 1975) and packing density of interfacial atoms 

(Richards, 1974). In 1983, an analytical method to calculate smooth 3D contours for 

proteins was developed by Connolly (Connolly, 1983a, Connolly, 1983b) describing a 

protein surface as critical points and surface normals which has formed the basis of 

curvature-dependent shape complementarity for protein-protein interfaces. Subsequently, 

Lawrence and Colman (Lawrence and Colman, 1993), defined a shape correlation 

statistic, Sc, to probe shape complementarity in protein quaternary association, protein-

inhibitor and antigen-antibody complexes, a modified version of which has been adopted 

in this study. A brief description of the shape correlation statistic, Sc is as follows. To 

start with, the entire Connolly surface (Connolly, 1983a) of both the interacting protein 

molecules is sampled as discrete area elements at a sufficiently high sampling density (15 

dots / Å2). Then, the interface atoms buried upon association of the two interacting 

protein molecules are identified. Nearest neighboring dot surface points of each buried 

area element from each of the two surfaces are subsequently identified within a distance 

cutoff of 1.5 Å and the following expression (Lawrence and Colman, 1993) calculated.  
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where SA→B and SB→A may be defined at every point on PA and PB (Figure 2) and w is a 

scaling constant set to 0.5  Å-2 and the braces define the median (50th percentile) of the 

distribution of SA→B and SB→A values over the surfaces PA and PB respectively. The 
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median was chosen as a better measure of central tendency since the distribution of Sc 

values was found to be negatively skewed (Lawrence and Colman, 1993). 

 

 

Figure 2. The shape correlation statistic, Sc. A and B are two interacting proteins. PA 
and PB are the portions of the molecular surface of A and B which are buried from solvent 
by their mutual interaction; xA and xB are two points on PA and PB, with nA and nB being 
two unit vector normals (outwardly and inwardly oriented respectively) to PA and PB at 
xA and x`A which is the point on PB nearest to xA. Figure reproduced from Lawrence and 
Colman, 1993.  
 

The shape correlation statistic has a theoretical range of -1.0 to 1.0. It is evident 

from the definition of Sc that interfaces with Sc = 1.0 will fit together precisely (e.g., 

identical surfaces), those with Sc = 0 will have uncorrelated topography and those with Sc 

= -1.0 will have perfect mismatch or anti-correlation among their protrusions and 

crevices. Thus, good surface fit for naturally occurring biomolecular interfaces should 

approach the value of 1.0. For oligomeric assemblies and protein / protein inhibitor 
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interfaces, Sc values were found to be in the range: 0.70 to 0.76 whereas for antigen / 

antibody interfaces, Sc ranges from 0.64 to 0.68.  

 

The shape correlation statistic, Sc, is advantageous over other earlier quantitative 

measures of shape complementarity for more than one reason. Firstly, Sc measures 

correlation of directions and is therefore relatively insensitive to the precise values of 

atomic radii used to generate the molecular surface. SA→B and SB→A are designed in such a 

manner that the scalar product term dominates at close surface proximity (the exponential 

weighting term drops to 0.9 at a surface element separation of 0.45 Å). Thus, Sc measures 

complementarity rather than surface separation whenever the surfaces are very close to 

each other (Lawrence and Colman, 1993). Another measure to estimate molecular 

goodness of fit (specifically designed for protein interiors) is the ‘small–probe contact 

dot’ algorithm (Word et al., 1999a). Contact dot surfaces are somewhat related to the 

concept of configuration dependent exposed surfaces (Lee and Richards, 1971). 

However, unlike the Lee & Richards algorithm, where a probe sphere of 1.4 Å (water) is 

rolled around the van der Waals surface of each atom to compute its solvent accessible 

surface, here, a  smaller  probe sphere (typical radius of 0.25 Å) is used. This small probe 

is placed on a set of predefined points and leaves a dot when it touches another atom 

located at least three covalent bonds away from the atom on whose surface point the 

probe sphere has been placed (Figure 3). One of the major conclusions drawn from the 

‘small probe contact dot’ algorithm is the importance of explicit hydrogens  (Word et al., 

1999b) in the analysis and their contacts in specific interactions between and within 

molecules. Also, based on this algorithm, (‘clashes’ of the contact dots inclusive of 

hydrogen contacts) a structure validation technique has been incorporated in the software 

‘Molprobity’ (Davis et al., 2007).  
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Figure 3. A schematic representation of the small-probe contact dot algorithm. The 
small probe (0.25 Å) sphere rolls over the van der Waals surface of each atom, leaving a 
dot sequentially wherever it also touches another atom that is not within three covalent 
bonds. The unfavorable contact at overlap sites of non-Hydrogen bonding atoms is 
emphasized by spikes instead of dots. Figure reproduced from Word et al., 1999b.  

 

3.2. Electrostatic Complementarity 

Another aspect of complementarity at the protein-protein interface  is a 

consequence  of the electrostatic interaction between proteins which has been studied 

extensively. Previously, elementary analysis was performed by simply counting the 

number of charged residues and salt bridges at protein-protein interfaces (Janin and 

Chothia, 1990; Jones and Thornton, 1995). Later, when the solvent continuum 

electrostatics model became available for proteins, electrostatic potential of protein 

structures were frequently determined by iteratively solving the 2nd order partial 

differential Poisson-Boltzmann equation for the protein-solvent system as implemented 

in the software DelPhi (Gilson et al., 1988; Nicholls and Honig, 1991). The Poisson-

Boltzmann equation describes the variation of electrostatic potential in space due to a 

distribution of charges in a multi-dielectric environment (Poisson equation) coupled to 

the distribution of partial charges on the protein and counter-ion (the latter assumed to be 

a Boltzmaan distribution). The Poisson-Boltzmann equation thus is an efficient way to 
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solve for the electrostatic potential as a function of the dielectric constant and the charge-

density throughout space (Mandell et al., 2001).  

 

Generally, the electrostatic potential is visually represented by color coding 

regions (red for negative and blue for positive potential) on the molecular surface by 

drawing equipotential contours on and around the protein. Such visualizations have been 

insightful in protein-protein and protein-ligand docking (Getzoff et al., 1983) and 

predicting protein-protein association sites (McDonald et al., 1991). Apart from 

visualization of the electrostatic potential at the surface buried in the interface, binding 

free energy calculations contributed by the electrostatic union of the proteins are also 

possible by continuum electrostatic models, given the availability of coordinates of a 

protein-protein complex (Gilson et al., 1988).  

 

Analyses of the electrostatic nature of protein-protein interfaces using continuum 

electrostatic calculations have been extensively used to determine whether surfaces 

involved in protein–protein interactions have either “charge complementarity” (Novotny 

and Sharp, 1992; Roberts et al., 1991) or “electrostatic complementarity” (Braden and 

Poljak, 1995; Demchuk et al., 1994; Hendsch and Tidor, 1994). In the work of McCoy 

et al., (McCoy et al., 1997) the complementarity appeared to be more in terms of 

electrostatic potential rather than charge. They further showed that over and above 

interfacial salt bridges which do make an important contribution to the electrostatic 

potential the rest of the atoms from the polypeptide chains also contribute significantly to 

the overall electrostatic complementarity at the interface. The delineation of the dielectric 

boundary is an essential aspect for continuum electrostatic calculations. In the same work 

it was also demonstrated that a partially desolvated model (protein being partially 

desolvated by the volume of the other protein in the complex, thus, leaving a low 

dielectric region in the close vicinity of the interacting molecule) was most appropriate 

for such continumm electrostatic calculations rather than a fully solvated model (where 

the dielectric surrounding the protein is considered to be high, that is of the solvent: 80).  
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Figure 4. A schematic representation of the partially desolvated model for 
continuum electrostatic calculation at protein-protein interfaces. The thick black 
lines denote the buried molecular surfaces on the two protein molecules. Electrostatic 
potential calculated twice on each buried molecular surface. Each time the charged atoms 
of one of the two interacting proteins contribute to the potential. The atoms of the other 
protein molecule are only assigned their van der Waals radii with zero charges (dummy 
atoms) to maintain the scaling and orientation of the molecule on the grid and also to 
correctly delineate the dielectric boundary. Therefore the region occupied by the partner 
molecule has a low dielectric constant. Figure reproduced from McCoy et al, 1997.  
 

To compute the electrostatic (potential) complementarity, first, the molecular 

surfaces (Connolly, 1983a) of the two interacting proteins were generated and the 

surface elements corresponding to the interfacial atoms determined. Then, the potential at 

each interface were enumerated (by solving numerically the linearized Poisson-

Boltzmaan equation as implemented in DelPhi (Nichollos and Honig, 1991)) twice, once 

each due to the partially charged atoms of the two protein molecules. Thus, each surface 

point was tagged with two values of electrostatic potential. The negative of the 

correlation coefficient (Pearsons / Spearman) of these two sets of potential values (for 
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each of the two interfaces) were then averaged to give the electrostatic complementarity 

(EC) at the interface. But for a few exceptions (e.g., 3HFM), the electrostatic 

complementarity values were mostly found to be within the range of 0.55 to 0.7 for most 

protein-protein complexes (McCoy et al, 1997).  

 

3.3. Complementarity in Docking 

The elevated values attained for surface and electrostatic complementarity for 

intra-protein association has served the basis for the design of scoring functions in 

protein-protein docking which eventually aims to derive a model for the bound structure 

starting from the 3D coordinates of two independently crystallized proteins which are 

known to interact in solution. A variety of geometric and electrostatic complementarity 

functions have been extensively used in the design of scoring functions for different 

protein-protein docking algorithms (e.g., ClusPro, ZDOCK, DOT) (Chen and Weng, 

2003; Mandell et al., 2001; Comeau et al., 2004; Tovchigrechko et al., 2002). These 

discriminatory scoring functions incorporate binding energy components into the process, 

based on the assumption that the native structure is at a global free energy minimum. 

Other discrimination methods try to refine the interface, as the surface side-chains of the 

independently crystallized proteins are frequently found in wrong orientations (Kimura 

et al., 2001). This interface-refinement substantially improves the van der Waals contact 

energy, leading to an increase in surface complementarity. Also, many electrostatic 

interactions and hydrogen bonds can be recognized as energetically favorable, facilitating 

a more successful discrimination (Comeau et al., 2004).  Many docking algorithms 

especially those employing convolution techniques or computer vision techniques have 

used geometric complementarity as their primary scoring function (Fischer et al., 1993; 

Norel et al., 1994). In other functions, a somewhat higher weightage is given to 

geometric descriptors than electrostatic components (Comeau et al., 2004). Some shape 

complementarity (e.g., in ZDOCK) functions are not explicitly based upon protein 

surface curvature or surface area, rather rewards continuous surface patches at the 

binding site and penalizes clashes (Chen and Weng, 2003). Most common geometric 
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(complementarity) descriptors are based on van der Waals contact energy (Mandell et 

al., 2001) and steric scoring schemes based upon ‘soft’ potentials (Walls and Sternberg, 

1992). Since it is not feasible to explore all possible conformations, the ‘softness’ 

involved in the design of these geometric descriptors is particularly important to tolerate 

structural imperfections without  leading to an increased number of false positives (Chen 

and Weng, 2003). On the other hand, both coulombic potential (with a distance 

dependent dielectric) and Poisson-Boltzmaan electrostatic energies have been used as 

different electrostatic descriptors. A good composite scoring function attempts to model 

hydrogen bonds electrostatically and hydrophobic interactions through van der Waals 

contacts (e.g., in DOT) (Mandell et al., 2001). Electrostatic terms are often associated 

with a desolvation free energy term using atomic contact potentials (Comeau et al., 

2004). Atomic contact potential is a smooth potential and thus varies little for small 

distance perturbations (e.g., coordinate errors), in sharp contrast to coulombic potential 

terms which are particularly sensitive (Comeau et al., 2004) especially to coordinate 

errors of solvent accessible side-chains. Hence, an increased number of structures are 

allowed to pass through the electrostatic filter compared to the desolvation filter, in an 

attempt to retain more near-native models. Some docking algorithms (e.g., DOT) use 

surface and electrostatic complementarity terms in a two-step manner for the initial 

screening and subsequent clustering of putative complexes starting from the order of 

billions (Mandell et al., 2001). In particular, coulombic electrostatic energies have been 

effectively used as a secondary filter to discard predictions with unfavorable charge 

interactions although having high geometric-fit (Gabb et al., 1997). However, a 

composite energy function has been shown to perform better than either van der Waals 

energy (geometric fit) or electrostatic energy alone (Mandell et al., 2001). In line with 

this view, the current study also probes both geometric and electrostatic 

‘complementarity’ within protein interiors and combines them to be used in several 

ensuing applications. One such application of surface complementarity was the study of 

side-chain packing within the protein interior which is briefly reviewed in the next 

section.  
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4. Side-chain packing within protein interiors and contact networks  

Stereo-specific packing of side-chain atoms within native protein interiors has 

been considered to be one of the crucial factors determining the isomorphism between 

sequence and fold (Crick et al., 1953). Interior packing within proteins is generally very 

dense (packing density: 0.7 to 0.8) resembling crystalline solids (Richards, 1977). 

Francis Crick (Crick et al., 1953) generalizing from the packing of helices in proteins 

(knobs into holes) postulated that side-chain packing most probably resembled a three 

dimensional jigsaw puzzle (the ‘jigsaw puzzle’ model). In contrast the ‘nuts and bolts’ 

model lies at the other extreme, which believes that dense packing in the protein interior 

does not require the geometric specificity between interacting side chains and can be 

achieved merely by the compaction of atoms within a constrained volume (Bromberg 

and Dill, 1994). One way to distinguish the two models is the degree of conformational 

freedom acquired by buried side chains upon systematic volume expansion of the 

polypeptide chain. In the jigsaw puzzle model, the interlocking of the side-chains remains 

intact upon a systematic expansion of the polypeptide chain till a critical point of 

disjuncture (~25% increase in volume) beyond which there is expected to be an abrupt 

increase in conformational entropy (Shakhnovitch et al., 1989). On the other hand, a 

gradual and continuous increase in side-chain entropy can be expected in case of the nuts 

and bolts model, as substantial conformational freedom could be gained from the very 

beginning of the volume expansion (Dill et al., 1995). Over the years however, some 

doubt has been cast on the jigsaw puzzle model as most proteins appear to be resilient to 

core mutations provided the hydrophobic composition of the core remains unaltered. A 

dramatic example was in the case of  phage T4 lysozyme (Gassner et al., 1996) where 

the protein could retain its overall fold (though with reduced thermal stability and 

activity), despite several core mutations (seven residues to methionine).  
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Figure 5. Multiple methionine substitutions within the core of T4 Lysozyme. The 
core residues which have been mutated to methionine are colored in yellow (PDB ID: 
1KS3) (Gassner et al., 1996).  
 

Structural studies of these and similar mutants have shown how conformational 

relaxation of both main- and side-chain atoms could compensate the deleterious effects of 

such mutations, thereby preserving the overall fold (Eriksson et al., 1992; Buckle et al., 

1996). The random mutation of the 12 out of 13 core residues of ribonuclease barnase 

was another example where 23% of the mutants retained their enzymatic activity in vivo 

(Axe et al., 1996). Design of novel hydrophobic protein cores show that modes of 

packing other than the native could also sustain a stable fold (Lim and Sauer, 1989; 

Hurley et al., 1992). It followed that the pattern of hydrophobicities embedded in the 

polypeptide chain could probably play a more decisive role in determining the fold, than 

the details of side chain packing, and a binary (hydrophobic H – polar P ) representation 

of the polypeptide chain should be sufficient to encode for the three dimensional fold of 

the protein molecule (Beasley and Hecht, 1997). This hypothesis probably also found 

support from the assumption that the hydrophobic effect plays a predominant role 
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(relative to van der Waals forces and hydrogen bonding etc.) in protein folding (Dill et 

al., 1990). The more recent ‘fuzzy-oil-drop’ model also assumes the hydrophobic 

collapse to be the driving force in the folding process and thereby takes into account the 

dynamic fluctuations in native protein cores (Brylinski et al., 2006; Brylinski et al., 

2007). However, studies on aromatic side-chain interactions in proteins have shown that 

aromatic pairing occurs after, rather than before, the formation of secondary structures 

(Thomas et al., 2002). Both experimental and computational studies have been carried 

out to design proteins based on the binary H-P code. Design of a 4-helix bundle with 

arbitrarily chosen polar and non-polar residues periodically placed in the sequence like 

that of an alpha-helix led to a soluble fraction of 60% of the designed population 

(Kamtekar et al., 1993). In silico lattice simulation studies in two and three dimensions 

could actually fold binary H-P sequences into compact structures (Sikorski and 

Skolnick, 1989; Lau and Dill, 1990). All such studies indicated that the pattern of 

hydrophobicities in the primary sequence appears to play a more crucial role in 

determining the overall fold than the geometrical constraints in packing. Nevertheless,  

stereospecificity of the interacting interior residues within proteins does contribute to fold 

stability as randomly redesigned cores (without any specific attempt to achieve optimal 

packing) led to either a disordered collapsed globule (overpacking) or complete 

unravelling of the structure (underpacking) (Dahiyat and Mayo, 1997; Lazer et al., 

1997). It thus becomes imperative to elucidate the geometrical constraints imposed on 

side chain packing which could also contribute to the de novo design of stable protein 

structures. In other words, attainment of dense, well-packed protein cores does not appear 

to arise automatically in the design process nor is it acquired simply by chance 

(Desjarlais et al., 1995; Dahiyat et al., 1997). An instructive example was the repeated 

failure to design parallel (α/β)8 – TIM barrel (Goraj et al., 1990; Tanaka et al., 1994), 

finally resolved successfully by Offredi et al. (Offredi et al., 2003), where a term 

optimizing for side chain packing specificity was deliberately included in the 

computational process. Over the years, theories with regard to side-chain packing within 

proteins have not only provided insight into protein structures (Brocchieri and Karlin, 

1994; Mitchell et al., 1997; Banerjee et al., 2003; Misura et al., 2004) but also have 
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facilitated their modelling (Cooper et al. 2010; Miao et al., 2011) validation (Hooft et 

al., 1996; Davis et al., 2007; Sheffler et al., 2009), prediction (Bradley et al. 2005; 

Raman et al., 2009) and design (Benjamin and Havranekb, 2011; Li et al., 2013).  

 

Initial attempts to find preferred modes of packing within the native proteins, 

however, were largly unsuccessful (Behe et al., 1991), especially for binary association 

between aromatic side-chains (Singh and Thornton, 1985). However, significant 

deviations from a random distribution for interplanar and polar angles specifying the 

geometry for interacting pairs of side chains were also found (Samanta et al., 1999; 

Brocchieri and Karlin, 1994; Mitchel et al, 1997).  

 

 

Figure 6. Packing of two interacting phenyl alanine side-chains within the protein 
interior (PDB ID: 2HAQ).  

 
 
Most of these studies indentified the binary pairs of interacting residues based on 

the proximity of their side-chain atoms which may not always reflect specific inter-

residue interactions. This interaction criterion was later replaced by a more sophisticated 

criterion based on surface complementarity (Lawrence and Colman, 1993, Banerjee et 
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al., 2003). The study demonstrated that binary association between two hydrophobic side 

chains (Leu-Leu, Leu-Phe etc), with high surface fit and maximal overlap between their 

corresponding residue surfaces, did indeed exhibit specific inter-residue geometry 

(significant deviation from a random distribution in at least one of the inter-residue 

orientational angles). It was thus clear that at least for a subset of contacts (with high fit 

and overlap) predictions of the jigsaw puzzle model were indeed valid. In effect, the 

study also established quantitative measures (in terms of surface complementarity and 

overlap) to identify interacting residue pairs with specific geometry. Later studies strove 

to develop accurate models of the forces (including π-π, cation-π, van der Waals and 

hydrophobic interactions) sustaining these preferred modes of side-chain packing 

(Misura et al., 2004).  This led to the development of  orientation dependent pair-wise 

potential for identification of the native structure from decoys (Misura et al., 2004) and 

their eventual use in structure prediction (Bradley et al. 2005). Binary interacting pairs 

were classified according to their functional group (e.g, aliphatic pairs, arometic pairs 

etc.) and distinct specific modes of packing were identified and categorised (T-shaped, 

parallel stacked) according to their preferred orientation.   
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Figure 6. Prefered modes of binary side-chain packing within proteins. Ball-and-
stick and space-fill representations of favorable side-chain pair orientations for Proline – 
Tryptophan (PW), Phenyl Alanine – Phenyl Alanine (FF), Valine – Valine (VV) and 
Leucine – Leucine (LL) pairs. Figure reproduced from Misura et al., 2004.  
 

The inter-residue interactions sustaining a native fold could also be viewed as a 

network, rather than a discrete assortment of the binary interacting pairs. Several groups 

have viewed protein structures as contact networks (Vendruscolo et al., 2001; Greene 

and Higman, 2003; Punta and Rost, 2005; Brinda and Vishveshwara, 2005; Li et al., 

2007; Bagler and Sinha, 2007) with variety of contact criteria used to define the inter-

residue interactions. An elaborate review of such studies can be found in the introduction 

of Chapter 2.  
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Figure 6. Multi-residue cross-talks within the protein interior. The internal 
archetechture viewed as a network (PDB ID: 2HAQ). 
 

As suggested by the title, complementarity acts as a constant theme throughout 

the whole thesis. The first part of the thesis uses shape complementarity between 

interacting side-chain surfaces to extract networks (with specific geometrical constraints) 

and exhaustively maps their distribution in a database of high resolution native protein 

crystal structures (Chapter 2). The objective of the study was to identify recurrent 

packing modes (in terms of network topologies) within native protein interiors and 

analyze the geometrical constraints imposed on them. The second part of the thesis 

probes the electrostatic complementarity of residues buried within native protein interiors 

and compares the two (shape and electrostatic) complementarity measures (Chapter 3). 

The third part of the study designs scoring functions based on the combined use of shape 

and electrostatic complementarity and applies them to correctly identify the native fold 

amidst a set of decoys (Chapter 4). A novel graphical method was also developed 

(available as a standalone suite of programs at: 

http://www.saha.ac.in/biop/www/sarama.html) in order to detect local / global structural 

errors in experimentally or computationally derived atomic models (Chapter 5). Finally, 
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these complementarity measures have been used as filters in the computational design of 

the hydrophobic core of a beta-barrel protein (Chapter 6). The network formalism of a 

protein structure was also applied to study the dynamic persistence of critical inter-

residue interactions and their evolutionary relationship in a given fold (Appendix I). 

Lastly, networks of ionic bonds have also been characterized and their essential 

geometrical and electrostatic features analyzed (Appendix II). 
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1. Introduction 

Dense packing of amino acid side-chains within the protein interior a signature of 

correctly folded proteins. Traditionally, there have been two models of protein packing: 

(1) the ‘jigsaw puzzle’ and (2) the ‘nuts and bolts’ model which lie on the opposite ends 

of the spectrum. The jigsaw puzzle model (Crick, 1953) postulates that the stereo 

specific interdigitation of amino acid side chains gives rise to densely packed protein 

interiors. On the other hand, the nuts and bolts model (Bromberg and Dill, 1994) does 

not require the association of side chains with specific geometry and asserts that the 

internal architecture of proteins arises simply due to the compaction of side chain atoms 

within a constrained volume. Despite dense packing of side chains, packing defects are 

also known to exist within molecular interiors, so most probably a single universal model 

might not account for all aspects internal molecular architecture.  However, using a 

surface complementarity function, a previous report from this laboratory (Banerjee et al., 

2003) demonstrated that binary association between two hydrophobic side chains (Leu-

Leu, Leu-Phe etc), with high surface fit and maximal overlap between their 

corresponding residue surfaces, did indeed exhibit specific inter-residue geometry. It was 

thus clear that at least for a subset of contacts (with high fit and overlap) predictions of 

the jigsaw puzzle model were indeed valid.  

 

One drawback of all such studies was that they treated the inter-residue 

interactions (sustaining a native fold) as a discrete assortment of binary interacting pairs 

whereas they are more accurately modeled as a network. Several attempts have been 

made to view protein structures as contact networks (Plaxco et al., 1998; Vendruscolo et 

al., 2001; Greene and Higman, 2003; Amitai et al., 2004; Punta and Rost., 2005; 

Brinda and Vishveshwara., 2005; Aftabuddin and Kundu, 2007; Li et al., 2007; 

Bagler and Sinha., 2007) wherein the amino acids have been designated as nodes and 

their mutual non-covalent interactions as edges. The character of these networks (in terms 

of degree distribution, clustering coefficients, characteristic pathlength etc.) exhibit 

variability depending on the cutoffs used to define inter-atomic contact. By and large, 
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most protein contact networks preserve ‘small-world’ character (local cohesiveness, 

global reach) (Greene and Higman, 2003; Bagler and Sinha, 2007; Vendruscolo et al., 

2002; Atilgan et al., 2004; Bagler and Sinha, 2005) and display signatures of 

assortative mixing (preferential attachment of new nodes to pre-existing high degree 

nodes) (Bagler and Sinha, 2007). However, degree distribution can be exponential, 

sigmoidal or dependent on a single exponent – as a function of the criteria used to define 

the atomic interactions (Brinda and Vishveshwara, 2005). It has also been noted that in 

certain aspects protein contact networks differ significantly from other real world 

networks, for example in the restricted number of edges a node can have. Apart from 

providing insights into protein structures, these networks have been used to identify 

residues implicated in folding nuclei (Li et al., 2007) and transition states (Vendruscolo 

et al., 2001), identifying functional residues involved in the active site (Amitai et al., 

2004), hubs stabilizing the packing of secondary structural elements (Brinda and 

Vishveshwara, 2005), rationalization of the difference in protein stabilities from 

thermophilic / mesophilic organisms (Brinda and Vishveshwara, 2005) and estimation 

of folding rates (Plaxco et al., 1998; Punta and Rost, 2005). The utility of the network 

view of the protein internal architecture is thus fairly well established.  

 

The following section presents a detailed analysis of the distribution of protein 

contact networks including classification and characterization of different packing 

topologies found in the interior of globular proteins. Such an analysis led to the 

recognition that certain packing topologies defined as packing motifs were found 

preferably in proteins. A limited region of the topological space was exhaustively 

mapped in terms of frequently occurring packing motifs, combinations of which could 

lead to networks of larger sizes. It was found that indeed larger networks could be 

assembled out of a basis set of smaller ones. One such frequently occurring motif namely 

the three residue clique received special attention with regard to its composition and 

geometry of associating residues.  
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Central to pursuing the research objectives outlined above was the extension of 

the jigsaw puzzle model into protein contact networks. Thus protein contact networks 

have been defined primarily in terms of surfaces rather than distance between point atoms 

(although such networks have also been studied in parallel for the sake of comparison). 

As mentioned previously, earlier studies (Banerjee et al., 2003) had established 

quantitative measures (in terms of surface complementarity and overlap) to identify those 

residue pairs whose interacting side chains exhibit specific geometry. These measures 

have now been used to define ‘surface contact networks’ based only on those inter-

residue interactions which severely constrain geometry and thus could play a 

predominant role in stabilizing a particular fold.  

 

2. Materials and Methods 

2.1. The Database: 

Initially, 918 protein crystal structures were culled from the protein data bank 

(RCSB-PDB) (Berman et al., 2000) with a maximum R factor of 20%, resolution cutoff 

of 2.0 Å, polypeptide chain length of 75 to 500 residues and homologues were removed 

at 30% sequence identity or above. For oligomeric proteins the largest polypeptide chain 

was retained for the calculations. For atoms with multiple occupancies, those with the 

highest occupancy were selected and the first conformer for equal occupancies. Proteins 

with incomplete side chain atoms and those with missing stretches of amino acid residues 

were individually surveyed in RasMol (Pembroke, 2000). If the missing stretch(s) or 

residue(s) involving incomplete side chain atoms was found to be either in the extremities 

(N / C terminal) of the chain or on completely exposed loop regions with no participation 

in interior packing, the protein was included in the database, otherwise rejected. The final 

database (DB1) consisted of 719 polypeptide chains (see Supplementary Information 

in the CD enclosed) of which 18.3% was all alpha, 19.8% - all beta, 32.3% - alpha/beta 

and 29.3% - alpha+beta. The protein class for each chain was decided by visual 

examination in Rasmol and a search in the SCOP database. 40 multidomain proteins were 

appropriately truncated and their domains allotted to the relevant class. The program 



43 
 

REDUCE (Word et al., 1999) was used to geometrically fix hydrogen atoms on the 

proteins prior to the calculations.  

 

2.2. Burial ratio: 

The exposure of residues to solvent (probe radius 1.4 Å) was estimated by the 

ratio (burial) of solvent accessible areas (SAA) (Lee and Richards, 1971) of the amino 

acid, X in the polypeptide chain to that of an identical residue located in a Gly–X–Gly 

peptide fragment with a fully extended conformation. Residues that were completely 

(0.00 <= burial ratio <= 0.05) or partially buried (0.05 < burial ratio <= 0.3)) were only 

considered in the analysis. 

 

2.3. Networks construction:  

As is well known every network can be represented as a graph, G = (V, E) which 

formally consists of a set of vertices (or nodes) V and a set of edges (or links) E between 

them. Trivially a graph can contain one or more standalone nodes (a node which is not 

connected to any other node in the graph) and a subgraph is called a component (Harary, 

2001) of the graph provided each node is connected at least to one other node of the 

graph. Since, in the protein contact networks to be defined, no standalone node was 

considered, ‘graph’ and ‘component’ were treated synonymously. A node stands for the 

side chain of a particular residue, and two types of networks were defined based on 

surfaces and point atoms. For the case of point atoms, if any two atoms located on two 

different side chains were within 3.8 Å of each other, the two representative nodes were 

connected by a link. The number of atomic contacts between two side chains was 

considered to be the weight of the connecting edge. The network spanning the entire 

protein was constructed by exhaustively searching for contacts in the neighborhood of 

buried residues until no more nodes could be included in the network. Thus a protein 

could have more than one contact network embedded within it with no common nodes 

between them. The smallest networks considered had three nodes. With the exception of 

glycine all other residues were considered as nodes. Based on the interaction criteria 

defined above, ‘point contact networks’ are undirected.  
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2.4. Van der Waals surface generation:  

The van der Waals surfaces for the proteins (including all hydrogen atoms) were 

sampled at 10 dots / Å2, the atomic radii being assigned from the all atom molecular 

mechanics force field (Cornell et al., 1995). The details of the surface generation have 

been discussed in an earlier study from this laboratory (Banerjee et al., 2003). In case of 

disulphide bridges care was taken to remove the extra points due to the interpenetration 

of the van der Waals spheres of the covalently linked sulphur atoms. Thus, the entire 

surface of the polypeptide chain was sampled as an array of discrete area elements 

defined by their location (x, y, z) and the direction cosines (dl, dm, dn) of their normals.  

 

2.5. Surface Complementarity:  

Based on the van der Waals surface, surface complementarity (Sm) (Lawrence 

and Colman, 1993) and overlap (Ov) were defined as in a previous report from this 

laboratory (Banerjee et al., 2003). Briefly, for a surface point (a) located on a buried side 

chain (referred to as a target), its nearest neighbor (b) was identified from the surface 

points of its surrounding residues, within a distance of 3.5 Å. Then the following 

expression was computed:  

 

                          ) . ( exp.   ),( 2 abba dwbaS   nn                                     (1) 

 

where na and nb are two unit normal vectors corresponding to dot surface points a and b 

respectively, with dab  the distance between them and w a scaling factor, set to 0.5. Thus 

for a target, a distribution of S values was obtained for all its side chain dot surface 

points. The surface complementarity (Sm) for a particular target was defined as the 

median of this distribution {S(a,b)}. The entire side chain surface of a target can be 

partitioned into patches based on the neighboring residues whose surface point(s) were 

identified as its nearest neighbors. For a specific target (A) and neighbor (B) the overlap 

(OvA→B) between them was defined as   
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where NAB is the number of points on the target (A) that have their nearest neighboring 

points on B and NA is the total number of surface points for A. The surface 

complementarity for this patch involving A, B  will henceforth be referred to as Sm
A→B. 

Contact between any two residues (target and neighbor) can  now  be defined in terms of 

surfaces (based on Sm and Ov).  Any two residues (target: A, neighbor: B) are said to 

‘interact’ with each other when Sm
A→B, OvA→B are greater than equal to 0.4 and 0.08 

respectively. It will be noted that the measures of Sm and Ov are non–commutative, that 

is Sm
A→B ,  OvA→B are not necessarily equal to Sm

B→A and OvB→A. We formally define 

inter-residue surface ‘contact’ when their ‘interactions’ are mutually reciprocal, that is 

both Sm
A→B, Sm

B→A and OvA→B, OvB→A simultaneously satisfy the interaction criteria. For 

any contact <Sm> and <Ov> were taken to be the mean of (Sm
A→B , Sm

B→A) and (OvA→B, 

OvB→A) respectively. Similar to point atom contact networks a node in this case is also 

representative of the residue side chain (surface). Two nodes are connected by an edge 

when their corresponding residue surfaces are in ‘contact’. Weight of such an edge was 

defined as 22  OvSm , analogous to calculating the magnitude of two mutually 

orthogonal vector components. Based on the definitions given above, such networks, 

henceforth referred to as ‘surface contact networks’, will also be undirected.  

 

Two distinct types of networks have been defined and used in this study (1) All 

Residue Surface Contact Network (ASCN) and (2) All Residue Point Atom Contact 

Network (APCN). All contact networks were represented computationally in terms of 

one-zero adjacency matrices, (N×N, for a network of N nodes) where the matrix element 

aij = 1 denotes node i to be connected to node j and 0 otherwise. Since both types of 

networks were undirected, their corresponding adjacency matrices were essentially 
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symmetric. Based on these adjacency matrices, the following network parameters were 

estimated: 

 

Degree: defined as the number of edges emanating from a node. 

Strength of a node: defined as the sum of the weights of all edges of a node, i given by:    
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where wij is the weight of the edge linking the ith and the jth node and the summation is 

over all nodes (N) of the network. 

 

Weighted and unweighted clustering coefficients: Expressions for these coefficients 

are defined as follows:  

Unweighted:    
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where ki is the degree of the ith node and |{ejh}| is the total  number of actually existing 

connections among the set of nodes (taken pairwise, {j,h}) from the direct neighborhood 

of node i and ki
C2 is the number of maximum possible connections within the same set 

(Watts and Strogatz, 1998).  

Weighted: 
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where the symbols have the same significance as given above and under identical 

conditions (Barrat et al., 2004). 
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2.6. Cliquishness:  

 

Clique is an induced subgraph where every node is connected to every other node. 

In case of an undirected graph containing a clique of n nodes, the embedded clique 

should contain nC2 edges. On the other hand, a complete graph will have any two nodes 

connected to each other. In this analysis the term ‘isolated clique’ refers to such complete 

graphs. Order (number of constituent nodes, nc) of the maximal clique was searched 

progressively in all networks starting from triplets. Initially, a systematic search for all 

possible combinations of 3 nodes (from a network) was performed to identify the closed 

triplet cliques and on occurrence, nc was set to 3. Then from the immediate neighborhood 

of a 3-clique, each node was sampled to test whether it satisfies the interaction criteria 

with all three nodes of the preexisting clique. A new node, on satisfaction of this 

criterion, was added to the previous clique and nc was increased by one. The search was 

continued till convergence.  

 

2.7. Deviation from random topology:             

 

To estimate deviation from a random topology, unweighted and weighted 

clustering coefficients were individually averaged over all nodes in a network and were 

compared with the same measure obtained for random graphs of identical size. Following 

standard methods, first, the link density (Ld) of a graph was estimated, defined as the ratio 

of the total number of actually existing edges in the graph and the number of maximum 

possible edges if it were a complete graph. Random graphs of identical size were 

generated by systematically calling each pair of nodes along with a random number seed 

and the pair was assigned a weighted connection if the random number was found to be 

lesser than the corresponding Ld value obtained from the original graph.  

 

 

 



48 
 

2.8. Relative Geometry of three-node packing motifs: 

The methodology of Singh and Thornton (Singh and Thornton, 1985) was 

adopted to identify preferred modes of packing in terms of the specific geometry of 

interacting amino acid side chains. An internal right handed frame of reference was 

defined for all the hydrophobic residues based on their side chain atoms. Conventionally, 

the Z axis was taken to be normal to the principal plane defined by either the ring atoms 

(phenyl for Phe, Tyr and indole for Trp) for aromatic residues or a defined set of three 

side chain atoms for branched chain amino acids (Val, Leu, Ile) (Figure 1). 

 

Figure 1. Internal frames defined on individual residues. Internal (right handed) 
frames of reference for the amino acid residues defined on the side chain atoms.  
 

To characterize the geometry of graphs or subgraphs consisting of three nodes, a 

plane, Ptriangle was defined passing through the origins of the three internal frames of 

reference (Figure 2). The resulting triangle defined by connecting the three origins was 
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characterized by three internal angles Ω1, Ω2 and Ω3 and the lengths of the three sides of 

the triangle r12, r13, and r23. A preferred right handed frame was placed at the centroid of 

this triangle such that the X axis (Xtr) points towards the origin of a preferred residue 

chosen according to the composition of the triplet, the Z axis (Ztr) taken normal to Ptriangle 

and Ytr = Ztr × Xtr . Three inter-planar tilt angles namely θ1t, θ2t and θ3t were then 

defined as angles subtended between Ztr and the Z axes of the three residue-internal 

frames. Three additional swivel angles φ1s, φ2s, φ3s were further defined as those 

subtended by Zp (the component of Ztr, projected on residue XY planes) and the X axes of 

the three residue-internal frames.  

 

Figure 2. Global frame of reference defined on the triangle, based on a three residue 
clique. The triangle formed by joining the origins of the three internal frames of 
references (X1, Y1, Z1; X2, Y2, Z2; X3, Y3, Z3) defined on the residues, constituting the 
triplet clique. The global frame of reference (Xtr, Ytr, Ztr) defined on the triangle, is also 
displayed.  
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The distributions of these angles in appropriate bins were analyzed for their 

deviation from a random distribution by means of χ2. The distribution in the angle 

subtended by two randomly oriented vectors has probability density given by sin θ` dθ`/2, 

where θ` is the angle between the vectors (Singh and Thornton, 1985) whereas for two 

coplanar random vectors each bin should be equally populated. Thus, for a random 

distribution, the probability of θ1t, θ2t, θ3t falls as a function of sin θ` dθ`/2 (three-bin 

models for Phe and Tyr and six-bin models for Val, Leu, Ile, Trp : 30° bins) and each bin 

should be equally populated for φ1s, φ2s and φ3s (six-bin models for Phe, Tyr, Trp, Val, 

Leu, Ile : 60° bins).  

 

2.9. Packing density:  

Packing density is conventionally defined as the ratio of the volume enclosed by 

the van der Waals (VDW) envelope for an atom, atomic group or molecule to that of the 

actual volume occupied by it in space, conventionally taken to be its Voronoi volume 

(Richards, 1974) (which is the volume of a polyhedron, systematically extended around 

the atomic group until it comes into contact with similar polyhedra in its neighborhood). 

The program Voronoia.exe (Rother et al., 2009) was used to compute local packing 

densities around residues within a polypeptide chain, where solvent excluded (SE) 

volume (Goede et al., 1997) of the atomic group (defined as the space which is not 

accessible to any center of solvent spheres, calculated by rolling a solvent sphere of 1.4 Å 

probe radius over the protein surface) is calculated instead of conventional voronoi 

volume. Then packing density is then computed by the following ratio: 

 

                         )( )( 

)( 
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densitypacking
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                       (6) 

 

The method is considered an improvement over previous algorithms due to the fact that 

cavities are critically distinguished and eliminated from the actual spaces between two 

molecular entities and also the neighboring surfaces are cut about non planar boundaries.  
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3. Results and Discussion 

3.1. Distribution of Networks on the basis of size 

The primary object of this study was to find, characterize and classify recurring 

patterns in the packing of side chain atoms within a protein which sustains its native fold. 

In this task, those contacts were deliberately chosen which strongly and specifically 

condition the inter-residue geometry of association. Since the majority of atomic contacts 

inside a protein are contributed by side chains atoms, it is natural to represent such 

interior packing as a network, defined primarily in terms of fit and overlap between their 

corresponding van der Waals surfaces (ASCN). In addition, point atom contact networks 

(APCN) was also studied simultaneously (albeit with a fairly strong interaction cut off: 

3.8 Å), by way of comparison.  

 

Contact between any two surfaces can be characterized in terms of overlap (Ov) 

that is the extent to which two surfaces are conjoined and by their goodness-of-fit or 

surface complementarity (Sm) (see Materials and Methods). A previous study from this 

laboratory demonstrated that when surface association between two amino acid side 

chains were greater than equal to 0.1 and 0.5 in Ov and Sm respectively (defined on a 

Connolly surface), angular distributions specifying inter-residue geometry exhibited 

significant deviations from a random distribution (Banerjee et al., 2003). For a 

corresponding van der Waals surface, the values of Sm were found to be marginally lower 

for the same binary interactions. In contrast to point atoms, the definition of ‘contact’ (see 

Materials and Methods) between two surfaces is not necessarily mutually reciprocal 

(i.e. A contact B does not imply B contact A). In networks based on surface contact, 

nodes representing residues A and B were connected with an edge only when (1) the 

contact between A and B was mutually reciprocal and (2) their Sm’s and Ov’s both were 

greater than equal to 0.4 and 0.08 respectively. For strong association between two 

residue surfaces their contact is expected to mutually reciprocate, which also effectively 

simplifies the network to an undirected graph. For both point atom and surface contact 

networks, inter-atomic distance and surface-overlap bear a strong positive linear 
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correlation. Sm on the other hand appears to be an additional feature for the latter. 

Interestingly, the choice of 3.8 Å as the interaction cut off for point atoms appear to lead 

to maximum resemblance between the two categories of networks.  

 

Distribution of networks in DB1 on the basis of size was studied first. Networks 

of smaller size (3-10 nodes) dominated the distribution (Figure 3) with a rapid decay in 

frequency for larger networks (> 50 nodes). The distributions were however characterized 

by a long tail such that networks with greater than 200 nodes were also found, though 

with highly diminished frequency. The distributions for both point-atom and surface 

contact networks were very similar. The characteristic shape of the distribution could be 

adequately described by a power law ( nxkxf  .)( , where x is the network size). 

The exponent, n was found to be 2.2 and 2.1 for ASCN and APCN respectively. 

Relaxation of the cutoffs on Sm and Ov did not appear to significantly alter the basic 

character of the distribution apart from decreasing the population for smaller networks 

thereby extending the tail for larger networks. On the other hand more stringent cut offs 

(Sm >= 0.5, Ov >= 0.1) led to the disintegration of the larger graphs, consequently 

increasing the frequency of small (3–10 nodes) and medium (11–20) sized networks with 

a drastic curtailment in the number of larger graphs (highest network size obtained was 

49 in comparison to 223 for Sm>= 0.4, Ov >= 0.08) (Table 1). Thus as has been 

previously observed (Brinda and Vishveshwara, 2005), there appears to be a very 

narrow margin in terms of more stringent contact criteria which can abruptly change the 

spread and extent of contact networks within proteins. 
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Figure 3. Distribution of surface contact networks according to size. Frequency 
distribution of networks of different sizes (n) for ASCN follows a power law decay 
(Corresponding histogram is displayed in the inset, the X axis being truncated at n = 50).  
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Table 1. Frequency distribution of contact networks according to size. Number of 
networks found in the database for different ranges of network size (i.e., number of 
constituent nodes). Cutoffs in surface complementarity (Sm) and overlap (Ov) 
respectively are given in bold within parentheses (for ASCN). 
 

Number of Networks 
 Network  

Size APCN ASCN (0.4, 0.08) ASCN (0.5, 0.1) 
3 1168  707  1995  
4 614  349  1016  
5 433  187  641  
6 273  147  452  
7 198 90  314 
8 148  71  230  
9 125 58  195  

10 99  53  134  
11-20 564 435 476 
21-30 236 341 47 
31-40 130 217 8 
41-50 72 105 4 

51-100 165 203 - 
101-150 60 63 - 
151-200 33 11 - 
201-250 10 6 - 

 

The same calculations repeated for polypeptide chains distributed in bins with 75-

150, 151-300, 301-500 residues gave similar curves, though for bins of larger chain 

length, networks of larger size appeared, thereby extending the long tail of the 

distribution. As expected, frequency distributions of polypeptide chains containing 

networks of a particular size gave a similar decaying trend with increasing network size; 

that is networks of smaller size were found embedded in polypeptide chains regardless of 

the chain length, whereas instances of larger graphs were progressively rare. These 

distributions tend to indicate that (in the subset of contacts where the geometry of 

association between residues are strongly and specifically conditioned) small (3-10 

nodes) to medium (11-20 nodes) sized networks are found universally in all protein 

structures, whereas linkage and/or fusion of these smaller networks to form larger ones is 
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protein specific and is thus context dependent. Very large networks (> 150 nodes) were 

found only in 17 proteins almost of which had chain length exceeding 400 residues with 

closed packing between extended secondary structural elements (helices and sheets). 

Overall, the propensities for very large networks favored alpha/beta proteins. 

 

In such protein contact networks, there is an obvious upper bound to the highest 

possible degree a node can have (dependent on the contact criteria) due to the limited 

volume of the residues involved in packing. For the present set of criteria, the highest 

degree of a node was found to be restricted to 8 and 9 for ASCN and APCN respectively. 

 

It is highly likely in the context of a protein contact network, that local 

cohesiveness (or clustering) of side chains (or nodes) may lead to dense packing. In 

accordance with this idea, contact networks of all sizes were included in calculations of 

average unweighted (C) and weighted (Cw) clustering coefficients which gave rise to 

identical measures. In parallel, a statistically significant number of random graphs (of 

corresponding sizes) were generated (see Materials and Methods) for the direct 

calculation of their clustering coefficients. In a log-log plot (Figure 4), average clustering 

coefficients of the contact networks decayed much less rapidly with increasing network 

size compared to corresponding random graphs. Since, this coefficient essentially 

determines the cliquishness of a typical neighborhood (Watts et al., 1998) in terms of 

clustering of local triplets (Barrat et al., 2004), (closed) triplet cliques could be regarded 

as units of (non-zero) clustering. In other words, a graph of whatever size or connectivity 

will result in zero clustering (C=Cw=0) if there is no ‘closed triplet’ found embedded 

within it. It is to be noted that any higher order cliques could be considered as an 

association of nested triplet cliques. These results therefore confirm that the probability 

of formation of closed triplets is much higher than random within protein contact 

networks. Thus, these 3-cliques could be regarded as ‘clustering units’ and has received 

detailed attention in terms of geometry and composition, to be discussed in later sections. 
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Figure 4. Protein contact networks are locally cohesive. Weighted average clustering 
coefficients (<Cw>) of contact networks for ASCN (blue) with their corresponding 
values for random networks (<Cr>: red) plotted against network size in a log-log scale. 
 

 

3.2. Packing Motif: 

One of the central concepts formulated in this study is that of a ‘packing motif’. 

To start with, a packing motif is defined as a graph with a limited number of nodes (3-7), 

consisting of unique topological connections, which can be found either in isolation or 

can appear as a component or an induced subgraph, embedded within a larger graph. It 

follows that no two distinct motifs are super-imposable onto each other. In other words 

two motifs are identical (or topologically isomorphic) if there exists a one-to-one 

correspondence between their vertex sets which preserve adjacency. The same motif can 

be found in different proteins and since a node (in the motif) does not conventionally 

represent any particular amino acid, it could stand for different sets of residues associated 

with diverse inter-residue geometries in the actual three dimensional assemblies. Thus a 

packing motif is a reduced representation of three dimensional residue clusters, rather 
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analogous to super-secondary structural motifs where, for example, different combination 

of residues in unrelated proteins can fold into (say) a helix-turn-helix.  

In order to aid numerical manipulations, each motif was uniquely represented by a 

linear array of numbers (motif identifier) which can be regarded as a complete set of 

invariants between any two isomorphic graphs. Initially each node of a given motif was 

assigned a string of numbers (of length (d+1) where d is its degree) starting with its own 

degree; followed by the degrees of its direct neighbors sorted in descending order. These 

numeric strings were collected as elements of an array and further sorted in descending 

order. Finally these sorted strings were concatenated, separated by a delimiter (Figure 5). 

This identifier-string representation of each motif facilitated the computational detection, 

classification and clustering of motifs from DB1. 

 

 

Figure 5. A novel numerical scheme to identify graphs with unique topology. Graphs 
(packing motifs) along with a unique number-string (motif identifier) displayed below 
each motif. Each node is assigned a concatenated numeric where the first digit stands for 
its own degree followed by degrees of its immediate neighbor sorted in a descending 
order. 
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As has been mentioned, one of the primary objectives of this study is to (1) 

identify recurrent motifs in smaller graphs and (2) to ascertain whether larger graphs can 

be constituted by an assembly of suitable motifs with appropriate topological 

connections. Firstly, all contact networks observed in the DB1 were sorted according to 

their size (n). For smaller graphs ranging from 3-7 nodes (or may be up to 10), each set 

(with nodes n = 3, 4 … etc) is expected to populate a limited number of motifs (Table 2). 

 

 

Table 2. Frequency distributions of small (3-10 nodes) networks with their 
corresponding number of motifs.  For a given network size, the number of networks 
observed in the database and the corresponding number of unique motifs have been 
tabulated. For example, 12 motifs were observed for 187 networks (ASCN) constituted of 
5 nodes (3rd entry of the table). Cutoffs in surface complementarity (Sm) and overlap (Ov) 
respectively are given in bold within parentheses (for ASCN). 
 

APCN 
 

ASCN (0.4, 0.08) 
 

Network  Size 
 

Networks Motifs Networks Motifs 
3 1168  2 707  2 
4 614  5 349  5 
5 433  13 187  12 
6 273  37 147  28 
7 198 60 90  47 
8 148  76 71  55 
9 125 93 58  46 
10 99  91 53  51 

 

Thus a motif could essentially be viewed as a prototype, while the actual networks 

observed in proteins as members belonging to a specific type of motif. To estimate the 

maximum number of possible motifs in networks of a given size (n), a series of random 

graphs were generated, conditioned by the fact that all nodes had to be connected to at 

least one other node in the graph (see Materials and Methods). Since any amino acid 

side chain can sustain only a limited number of contacts from its surrounding 



59 
 

environment, it follows that there is a definite upper bound to the maximum number of 

edges a node can have. Therefore the highest degree (for a given network size, n) was 

determined from the set of actual protein contact networks, and this number was used to 

constrain the maximum attainable degree for the corresponding random graphs. Good 

agreement between the actual number of motifs observed in the database and the possible 

number of motifs from the random graphs (with no cutoffs on the maximum attainable 

degree of a node) were found for n = 3, 4 with rapidly increasing divergence for n ≥ 5 

(Table 3). Most probably this was due to systematic over estimation in the number of 

unique random graphs. Thus for graphs with n ranging from 7 to 10, the number of 

possible motifs were recalculated by varying the maximum allowable degree from 4 (for 

smaller side chains) to the highest observed value in corresponding protein contact 

networks, which happened to be either 6 or 7 (for bulkier residues). However despite 

lowering the cutoff on the permissible number of edges for a node it appeared that for n ≥ 

5 a diminishing number of possible motifs is actually being realized within proteins 

(Table 3). 
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Table 3. Correlation between number of (unique) motifs: observed from database 
versus simulated from random graphs. For a given network size (n), the number of 
unique motifs observed in the database is tabulated along with the corresponding number 
generated from simulated random graphs without and with cutoffs on the highest 
attainable degree. 
 

Observed 
Highest Degree 

Number of Motifs Network 
Size (n) 

Highest 
possible 
degree  
(n-1) APCN ASCN APCN ASCN 

Cutoff on 
the highest 
attainable 

degree 

Number of 
unique  
random 
graphs 

3 2 2 2 2 2 2 2 

4 3 3 3 5 5 3 6 

5 4 4 4 13 12 4 22 

6 5 5 5 36 25 5 114 

4 315 

5 639 

7 6 6 5 61 45 

6 782 
4 1179 

5 4300 

8 7 5 6 76 55 

6 7151 
4 1410 

5 10000 

6 25864 

9 8 7 5 93 46 

7 35002 
4 400 

5 4512 

6 20701 

10 9 7 6 91 51 

7 39654 
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All networks were systematically searched for size of the maximal clique (nc) (see 

Materials and Methods) which interestingly was found to be no more than 4 for 

embedded cliques (nc being 3 for a large majority of cases) and not exceeding 3 for 

complete graphs (or isolated cliques). In fact, the number of networks with a maximal 

clique of 3 and 4 nodes respectively, were found to be 1548 and 77 in case of ASCN 

(1662 and 146 in the same order : APCN). Since an n-clique should exactly have (nC2 – 

n) diagonal edges, these findings demonstrate that any possible closed-ring topology of n 

> 4 to be found in the database can have at the most (nC2 – n –1) diagonal edges. Thus the 

possible network architectures spanning the space under study is expected to be restricted 

to a few basic topologies namely linear chains, closed triplets (with or without 

branching), closed quadruplets (including embedded 4-cliques), higher order ring 

closures (n > 4) with a restricted number of diagonal edges and possibly a series of non-

planar graphs.  

 

For n = 3 there are trivially only two possible motifs (1) the open linear chain 

(motif id: 211-12-12) and (2) the isolated closed triplet clique (motif id: 222-222-222). 

Both possibilities are found in protein contact networks, though with considerable 

difference in the number of their respective occurrences. The overwhelming majority of 

these three-node graphs are found to be open linear chains (660: ASCN; 1070: APCN) 

which offer greater flexibility unlike isolated closed triplet cliques (47: ASCN; 98: 

APCN) which can only occur, satisfying additional geometric constraints. It could also be 

possible that triplet cliques once formed display an inherent tendency to evolve into 

larger networks given the fact that a significantly larger number of these cliques are 

found to be embedded as induced subgraphs in larger graphs (8876 : ASCN; 9102 : 

APCN) relative to isolated instances. Out of a total of 719 polypeptide chains in the 

database embedded triplet cliques have been found at least once in 696, 689 for ASCN 

and APCN respectively whereas for isolated  instances the corresponding numbers are 47 

(ASCN) and 90 (APCN) .  
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It is a relatively simple task (at least up to n = 5) to enumerate the possible 

number of motifs and then find their respective number of members (or the frequency of 

their occurrence) in the DB1. It is however a more complex exercise to propose a sound 

classification scheme, which leads to the regular ordering of actually observed motifs. To 

this end two additional concepts were defined namely family and path. Two motifs g(n) 

and g`(n+1) (with n and n+1 nodes respectively) are related  by a path if the motif 

g`(n+1) can be formed from g(n) such that the node added to g(n) is linked to only one 

pre-existing node by a single edge. In other words the transformation g(n) → g`(n+1) is a 

path provided the newly added node has degree of one and the degree of one and only 

one pre-existing node (to which the new node is connected) in g(n) increases by one. 

Again, all motifs which can be linked by successive paths: g(n) → g`(n+1) → g``(n+2) 

… etc. fall within the same family. However, in case the intermediate g`(n+1) was 

missing, g``(n+2) was still retained in the same family. Thus, essentially a path leads to 

linear branching(s) about nodes belonging to a basic core topology. It follows that a motif 

of larger size (greater than 7 nodes) can either belong to an already existing family 

provided it is appropriately linked by a path or belong to an entirely new family (for 

example, ring closures of n>7), an occurrence which proved to be remarkably less 

frequent.  

 

For n = 4, there are six possible motifs, of which five (with the sole exception of 

isolated quadruplet cliques or complete graphs of 4 nodes) were found to have members. 

Two motifs (221-221-12-12 and 3111-13-13-13) found to have the highest number of 

members (205, 85: ASCN and 370, 117: APCN respectively) could be related by a path 

to open linear chains (n = 3) or family: f1 (Figure 6).  A third motif (3221-232-232-13 

with 52 members in ASCN and 99 in APCN) was included in the family: f2, originating 

from closed triplet cliques (Figure 7). The remaining two (222-222-222-222 and 3322-

3322-233-233) motifs were closed four membered rings (the latter having one diagonal 

edge) and were put in distinct families (f3a, f3b). Thus up to n = 4, a total of 7 motifs 

with a total number of 1056 (ASCN) and 1782 (APCN) members were organized into 4 
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families (f1, f2, f3a, f3b), with the overwhelming majority (1049: ASCN and 1754: 

APCN) of members incorporated into families f1 and f2.  

 

 

Figure 7. Motifs belonging to family f1. Network diagrams of motifs up to size 7 
(nodes) belonging to family f1. The family describes topologies of minimally connected 
open linear chains. Motif identifier for each motif is displayed below the motif with the 
number of members for ASCN and APCN respectively in parentheses separated by a 
front slash. 
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Figure 8. Motifs belonging to family f2. Network diagrams of motifs up to size 7 
(nodes) belonging to family f2. The family describes topologies of triplet cliques with or 
without linear branching. Motif identifier for each motif is displayed below the motif 
with the number of members for ASCN and APCN respectively in parentheses separated 
by a front slash.  
 

More or less the same trend was preserved for n = 5 where new motifs with 

significant number of members were again placed in the families f1 and f2. Additional 

motifs with marginal membership were included in f3a and f3b, which were essentially 
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branched four membered rings. Two more families (f4a and f4b) were created at this 

point, the former (f4a) originating from the closed pentagon (with no diagonals) whereas 

the latter (f4b) includes the pentagon with a single diagonal edge. Other families at this 

point include topologies demonstrated by two or more closed triplets; fused along their 

edges (f5), connected at a node (f6a) or connected by an edge (f6b). Once again, families 

other than f1 and f2 exhibited negligible memberships. Moving up levels n = 6, 7 led to 

the inclusion of only five more families: (a) linkage of two four membered rings through 

a node (f7: 1 member each in ASCN and APCN), (b) embedded quadruplet cliques with 

additional linear branching (f8a: 1 in ASCN and 4 in APCN) (c) non-planer graphs other 

than quadruplet cliques (f8b: 1 in ASCN and 3 in APCN), (d) closed six membered ring 

with or without diagonals edges (f4c : 3 each in ASCN and APCN) and (e) graphs where 

two non-adjacent nodes are connected by more than two sequences of successively 

connected nodes. (f8c: 4 each in ASCN and APCN). The addition of nodes from n = 5 to 

n = 6, 7 primarily led to the addition of motifs in the pre-existing families by, (1) 

increasing the length and branching of the linear chain (f1), (2) increased linear branching 

about the triplet cliques (f2), (3) progressive branching and inclusion of diagonal edges of 

the higher order closed rings (f3a, f3b, f4a, f4b, f4c, f5).  

At this stage it became obvious that the initial definitions were leading to a 

proliferation of families with almost negligible membership. Thus to reduce the number 

of such families some exceptions were made. For families originating from five 

membered rings (f4a & f4b), motifs with a closed triplet fused about any two vertices of 

the pre-existing pentagon (3332-3322-3321-233-232-232-13: f4a & 43322-3432-3432-

243-242-232, 533221-3532-3532-253-252-232-15, 44322-44321-3442-244-242-232-12: 

f4b) were included in the same respective families. Finally up to n = 7, 94 (ASCN) and 

117 (APCN) motifs with 1480 (ASCN) and 2686 (APCN) members respectively were 

organized into 13 families. Diagrams corresponding to families other than f1 and f2 are 

given in the Supplementary Information in the CD enclosed. 

The same procedure described above was performed for polypeptide chains in 

each individual protein class (all alpha, all beta, alpha/beta, alpha+beta), in order to 

investigate any preference for specific motifs or families. By and large no outstanding 
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preference was observed (after suitably normalizing for the number of polypeptide chains 

in each class), though a somewhat reduced frequency was found for family f2 in the case 

of all alpha proteins. The statistics was not robust for most families barring f1 and f2 due 

to their extremely low frequency of occurrence.  

The overall character of the distributions of motifs into families was not radically 

changed for different cutoffs on Sm and Ov. Even then, the application of more stringent 

cutoffs (Sm: 0.5, Ov: 0.1) led to an increase in the population of smaller motifs, 

predominantly in the f1 family. Most notable was the increase in frequency of motifs 

with 7 nodes (f1) probably due to the exclusion of few weaker links leading to the 

‘minimally connected’ linear chain. Since from n = 5 to n = 6, 7 a diminishing number of 

families (only 5) are added with negligible membership, it is highly likely that larger 

networks (n > 10) will generate motifs either populating already existing families or will 

be assembled by joining pre-existing motifs following a defined set of rules. Since the 

same trend of preferential membership in the first two families were followed in 

networks of size n = 8, 9, 10 it was decided to begin the construction of higher order 

graphs out of a motif basis set obtained from networks of sizes up to n = 7, with the 

understanding that motifs of sizes greater than 7 nodes (located in appropriate families) 

would also be utilized depending on the context of a particular network. Variants of a 

motif with branching(s) from nodes different from those originally observed (especially 

with closed ring topologies) though preserving core topology would also be used in the 

resolution of larger graphs into subgraphs. For n = 10 it was observed that the total 

number of motifs became comparable to the number of networks or members (Table 2). 

Thus, the resolution of larger graphs in terms of the proposed basis set was attempted for 

n greater than 10. 

Generally, a graph can be resolved into either a degenerate subset of spanning 

subgraphs (derived by deleting edges of a graph such that the number of nodes remains 

conserved) and/or induced subgraphs (by deleting nodes with their corresponding edges 

such that two nodes adjacent in the subgraph must be adjacent in the original graph) 

(Harary, 2001; Cheriyan and Maheshwari., 1988). Thus, analogous to a spanning 

subset, deleting a judiciously chosen set of specific edges of a graph should produce 
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independent unconnected components. Since, in this study, such isolated components are 

treated as graphs (see Materials and Methods) it should be possible to resolve a larger 

graph into a set of motifs (regarded as components) or their variants from pre-existing 

families, by deleting specific edges. Such edges, however, strictly exclude those being 

involved in a closed ring (of any size, n >=3), so that the method does not trivially 

produce an arbitrary combinations of motifs. On the other hand, in an induced subgraph, 

there exists an identical topological relation between any two corresponding nodes to that 

of the original graph. This one-to-one mapping serves as the basis for a computational 

search for motifs embedded as induced subgraphs in a larger graph. These two 

fundamental concepts of graph-analysis were successfully implemented to test the 

hypothesis whether the motif space is by and large adequate in assembling larger graphs. 

Contact networks for n = 15 (38: ASCN; 47: APCN) were carefully examined using 

Cytoscape (Shannon et al., 2003) and it was found that the majority of (24: ASCN; 28: 

APCN) networks could be resolved across one or more edges to produce isolated 

components which were invariably motifs belonging to pre-existing families (Figure 9). 

 

Figure 9. A contact network resolved into components. A contact network of size 15 
(from 1OWL.pdb) resolved into isolated components (separated by boxes) belonging to 
families f1, f2 and f3b. 
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Other networks could not be resolved into pre-existing motifs by simply cutting 

across edges and in such instances the majority of possible induced subgraphs embedded 

in the graph were recognized as pre-existing in the motif basis set (Figure 10).  

 

Figure 10. A contact network resolved into induced subgraphs. A contact network of 
size 15 (from 2HNF.pdb) resolved into induced subgraphs (highlighted by different 
colors) belonging to families f3a and f7.  

 

Cases were also found where a larger graph was resolved into both components 

and induced subgraphs (10: ASCN, 15: APCN) (Figure 11).  
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Figure 11. A contact network resolved into induced subgraphs and components. A 
contact network of size 15 (from 1MQV.pdb) resolved into induced subgraphs 
(highlighted by different colors) and components (separated by boxes) belonging to 
families f2, f4a and f1 respectively. 
 

It is to be noted that there can be more than one sequence of steps to assemble a 

graph from degenerate sets of subgraphs following either of these procedures. As 

expected, for all cases, newly emerging motifs were restricted only to ring closures of 

greater than 6 nodes. Thus, predictably, for graphs with more than 15 nodes, new motifs 

should mostly be closed ring topologies with increasing number of nodes in the ring.  
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3.3. Triplet Clique:  

The classification  of motifs into families reveals that the overwhelming majority 

of contact networks found in protein structures occur in the first two families (f1 + f2) 

originating from core topologies of  either open linear chains or closed triplet cliques. 

Although the simple rule governing the classification of motifs leads to about thirteen 

families in all, a significant proportion of these families have such negligible membership 

that they can be currently disregarded. To investigate whether the most frequently 

occurring motifs exhibit any preference in their constituent amino acid residues and 

whether their side chains pack with specific geometry, the frequently occurring closed 

triplet clique was chosen for further investigation. Analysis of the relative frequencies of 

isolated and embedded triplet cliques appeared to suggest that isolated cliques (or in other 

words, complete graphs of three nodes) have an inbuilt tendency for further branching(s) 

about the three constituent nodes resulting in their being embedded in larger graphs. 

Thus, to improve the statistics, both isolated triplet cliques and those embedded as 

induced subgraphs in larger graphs were pooled together. Further, since hydrophobic 

residues show greater propensity for burial and inclusion into contact networks, only the 

subspace of triplet cliques composed exclusively of hydrophobic residues (Ala, Val, Leu, 

Ile, Phe, Tyr, Trp) were considered. The resultant number of triplet cliques thus reduced 

to 4874, 1545 out of a total of 8923, 9200 for ASCN and APCN respectively. 

Interestingly, the number of such cliques was found to be significantly higher for ASCN 

relative to APCN, thus, results from ASCN alone are being discussed, which in any case 

should give superior statistics.  

 

For a combination of three residues packed in the form of a closed triplet clique 

(Figure 12) three possibilities can be expected: (i) C1: all the three constituent residues 

are non-identical (e.g., Phe-Leu-Val) (ii) C2: one residue unique, the other two being 

identical (e.g., Ala-Ala-Leu) and (iii) C3: all three residues identical (Leu-Leu-Leu). 

Starting with the set of seven hydrophobic residues (listed above) the total number of 

possible combinations for each case are 35, 42 and 7 respectively. For assemblies of three 

identical residues (C3), the highest frequencies were observed for Leu-Leu-Leu (55.5%), 
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followed by Ile-Ile-Ile (~19.2%) and an almost equal proportion for Phe-Phe-Phe and 

Val-Val-Val (both ~12%) (Table 4). A negligible fraction of triplets was found to be 

composed exclusively of Ala, Trp and Tyr. In all probability an assembly of three 

leucines provides optimal conditions, in terms of shape and size for cohesive packing. 

Ala and Trp represent the opposite ends of the spectrum with regard to volume and the 

association of tyrosines could be disfavored due to the partial charge of its terminal side 

chain oxygen (OH). A similar trend was observed for triplet cliques with one unique and 

two identical residues (C2). 40% of all triplets in this category were composed of two 

leucines, with X-Ile-Ile, X-Phe-Phe and X-Val-Val exhibiting frequencies 20.2%, 16.8% 

and 16.7% respectively. Predictably, X-Ala-Ala, X-Trp-Trp and X-Tyr-Tyr were rarely 

found. For hydrophobic clusters with three non-identical residues (C1) the most frequent 

composition is that of Ile-Leu-Val (~15.4%). It is notable that the most frequent triplet 

clique in this category can also be considered to be an exception as the overwhelming 

majority of triplets consist of at least one aromatic residue (Trp, Tyr or Phe : 79.2%). 

Even here, occurrence of only one aromatic in the triplet clique appears to be preferred 

over two, whereas cliques composed exclusively of aromatics seldom occur (Figure 12). 

Examination of the position of the residues along the polypeptide chain showed that the 

contacts were mostly non-local (spatially located greater than 25 residues apart) in 

character. 
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Table 4. Triplet cliques constituted of hydrophobic residues exhibit preferences in 
their amino acid composition. Frequency distributions of triplet clique compositions in 
categories (a) C1 (all three residues different), (b) C2 (two residues identical) and (c) C3 
(all three identical) are tabulated respectively. 

 

(a) 

Composition Frequency  Composition Frequency  
ILE-LEU-VAL 322 TRP-PHE-VAL 25 
PHE-ILE-LEU 276 PHE-VAL-ALA 22 
PHE-LEU-VAL 246 TRP-TYR-LEU 21 
TYR-ILE-LEU 151 TRP-ILE-VAL 21 
PHE-ILE-VAL 150 TRP-TYR-PHE 18 
TYR-PHE-LEU 117 TRP-TYR-ILE 12 
TYR-LEU-VAL 98 TRP-TYR-VAL 10 
TYR-PHE-ILE 85 PHE-ILE-ALA 9 
TYR-PHE-VAL 77 TYR-LEU-ALA 9 
TYR-ILE-VAL 69 TYR-PHE-ALA 8 
TRP-PHE-LEU 56 TYR-VAL-ALA 6 
LEU-VAL-ALA 50 TRP-VAL-ALA 5 
TRP-ILE-LEU 46 TYR-ILE-ALA 4 
TRP-LEU-VAL 41 TRP-LEU-ALA 4 
TRP-PHE-ILE 33 TRP-PHE-ALA 3 
ILE-LEU-ALA 32 TRP-ILE-ALA 3 
ILE-VAL-ALA 30   
PHE-LEU-ALA 27 TOTAL 2086 

 

(b) 

 

Composition Frequency  Composition Frequency  
ILE-LEU-LEU 291 LEU-TYR-TYR 20 
VAL-LEU-LEU 268 TRP-PHE-PHE 20 
PHE-LEU-LEU 237 TRP-ILE-ILE 19 
LEU-ILE-ILE 187 VAL-ALA-ALA 17 

LEU-PHE-PHE 162 ILE-TYR-TYR 13 
VAL-ILE-ILE 134 VAL-TYR-TYR 12 

LEU-VAL-VAL 128 LEU-TRP-TRP 11 
ILE-VAL-VAL 119 ALA-ILE-ILE 11 
ILE-PHE-PHE 105 LEU-ALA-ALA 9 
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TYR-LEU-LEU 104 ILE-ALA-ALA 8 
PHE-ILE-ILE 94 PHE-TRP-TRP 6 

PHE-VAL-VAL 88 TRP-VAL-VAL 6 
VAL-PHE-PHE 67 ILE-TRP-TRP 5 
TYR-PHE-PHE 53 TRP-TYR-TYR 4 
TRP-LEU-LEU 47 ALA-PHE-PHE 3 
TYR-ILE-ILE 46 VAL-TRP-TRP 3 

TYR-VAL-VAL 35 TYR-TRP-TRP 3 
ALA-VAL-VAL 31 TRP-ALA-ALA 1 
PHE-TYR-TYR 29   
ALA-LEU-LEU 28 TOTAL 2434 

 

(c) 

Composition Frequency  Composition Frequency  
LEU-LEU-LEU 202 ALA-ALA-ALA 4 

ILE-ILE-ILE 70 TRP-TRP-TRP 2 
PHE-PHE-PHE 43 TYR-TYR-TYR 1 
VAL-VAL-VAL 42 TOTAL 364 
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Figure 12. A three-residue clique, embedded in the protein interior. An embedded 
triplet clique (from 3F67.pdb) constituted of 119-Phe (Olive), 142-Trp (Lime) and 143-
Tyr (Yellow) displayed as sticks in a background of broken stretches of the backbone 
being displayed as cartoon (Cyan).  
 

Thus, the data indicates that even though most of the possible residue 

combinations are realized in local closed triplets within proteins, there is a wide 

divergence in their respective frequencies. Some residue combinations definitely appear 

to be preferred over others. Moreover, since only a subspace has been studied, the 

compositional propensities appear to be fairly pronounced, rather than outstanding. 

Without the use of surfaces and careful classification of triplet cliques (based on their 

compositions) these could well be overlooked. Even then, the formation of well packed 

three residue cliques in proteins appears to be constrained in terms of the total volume 

occupied by the triplet and probably their inter-residue geometry. The question then is 

what are the geometrical constraints imposed on these three-residue cliques?  
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Extending the methodology established by Singh and Thornton (Singh and 

Thornton, 1985) (to study inter-residue geometry between two amino acids) an internal 

right-handed Cartesian frame of reference was defined for each of the three residues 

constituting the triplet clique. Connecting the origins of the three internal frames of 

reference constructs a triangle, which can be considered to be a reduced geometric 

representation of the assembly. A global frame of reference was then defined on the 

triangle plane (see Materials and Methods), the global Z axis being the normal to the 

plane and the origin being set at the centroid of the triangle. However, there can always 

be two degenerate directions of the normal (Z axis). Therefore in order to secure 

uniformity among all the reference frames the following conventions were adopted:  

 

1. For C1 (all three residues different), the three residues (R1, R2, R3) were first 

sorted on the basis of their side chain volume R1 > R2 > R3. Let the vector directed from 

the origin of R1 to R2 be v1 and that from R1 to R3 be v2.  Then the global Z axis was 

defined as v1 × v2 and the global X axis as the unit vector directed from the global origin 

towards the origin of R1.   

 

2. For a given composition in C2 (e.g., Leu–Phe–Phe) one specific example was 

arbitrarily chosen whose unique residue was designated R1 and R2, R3 were assigned 

such that the identical procedure outlined above (in procedure 1) resulted in an acute 

angle being subtended between the global Z and the internal Z of R1. All other triangles 

with the same composition were superposed onto this template. The calculations were 

repeated starting from different templates to confirm that the results were not artifacts of 

this geometrical procedure. 

 

3. In case of C3 (e.g., Leu–Leu–Leu), a randomly chosen triplet was arbitrarily 

assigned R1, R2, R3 and the global frame was defined following procedure 1. All other 

triangles of the same composition were superposed onto this template. To select for the 
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best possible superposition in each case 6 combinatorial possibilities were checked. 

Similar to C2, the calculation was repeated for different starting templates.    

     

For almost all the compositions the lengths of the triangular edges and the internal 

angles were severely constrained, with standard deviations ranging from ~ 0.5 - 0.6 Å 

and ~ 5 - 10° in lengths and angles respectively. In almost all the cases, the triangle 

approximates to being equilateral with the average of all the three sides lying between 5-6 

Å and angles close to 60° (± 10°). Inclusion of bulky residues in the triplet cliques (Tyr-

Phe-Leu), (Tyr-Phe-Ile) did not appear to significantly alter the overall trends observed in 

these triangular parameters. The longest average lengths were observed for Ile-Leu-Leu 

(6.3 ± 0.6), Leu-Ile-Ile (6.4 ± 0.5), Ile-Val-Val (6.3 ± 0.5) and Ile-Phe-Phe (6.3 ± 0.6) 

(Table 5).  
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Table 5. The triangle constructed from the associated residues in a triplet clique 

approximates to being equilateral. Average lengths of sides (Å) and internal angles (°) 
(along with their standard deviations in parentheses) of the triangle formed by joining the 
origins of the three internal frames corresponding to the constituent residues in a triplet 
clique are tabulated. Only those compositions have been given whose frequencies are 
greater than equal to 50.   
 

Composition 

 

Frequency 

 

<r12> 

 

<r13> 

 

 

 

 

 

<r23> 

 

 

 

 

 

<Ω1> 

 

 

 

 

 

<Ω2> 

 

<Ω3> 

 

ILE LEU VAL 322 5.9 (0.7) 5.9 (0.7) 5.6 (0.5) 56.5 (7.5) 61.6 (9.2) 61.9 (8.6) 
ILE LEU LEU 291 6.3 (0.6) 5.6 (0.6) 5.5 (0.6) 55.0 (7.9) 55.9 (5.9) 69.1 (7.1) 
PHE ILE LEU 276 5.8 (0.8) 5.4 (0.6) 5.9 (0.6) 63.2 (9.5) 55.5 (9.3) 61.3 (10.9) 
VAL LEU LEU 268 5.4 (0.5) 5.9 (0.4) 5.6 (0.6) 59.2(7.8) 65.2 (5.6) 55.5 (5.4) 
PHE LEU VAL 246 5.5 (0.6) 5.3 (0.6) 5.6 (0.6) 61.6 (8.2) 57.7 (9.4) 60.7 (9.4) 

PHE LEU LEU 237 5.1 (0.5) 5.8 (0.5) 5.6 (0.5) 62.1 (8.4) 65.7 (7.6) 52.1 (5.7) 
LEU LEU LEU 202 5.2 (0.5) 6.1 (0.3) 5.7 (0.4) 59.5 (4.2) 67.8 (4.9) 52.6 (4.7) 
LEU ILE ILE 187 6.4 (0.5) 5.7 (0.6) 6.3 (0.8) 63.4 (11.7) 52.8 (7.0) 63.8 (7.6) 
LEU PHE PHE 162 5.1 (0.5) 5.8 (0.5) 5.5 (0.5) 60.7 (9.3) 66.1 (7.0) 53.3 (5.9) 
TYR ILE LEU 151 5.7 (0.8) 5.3 (0.6) 6.0 (0.6) 65.5 (8.8) 53.9 (9.5) 60.5 (11.1) 

PHE ILE VAL 150 5.7 (0.7) 5.4 (0.7) 5.9 (0.7) 64.9 (10.6) 55.6 (10.7) 59.5 (10.3) 
VAL ILE ILE 134 5.5 (0.6) 6.3 (0.6) 6.2 (0.8) 63.1 (11.1) 64.9 (7.5) 52.0 (7.2) 
LEU VAL VAL 128 5.9 (0.4) 5.3 (0.5) 5.7 (0.5) 61.1 (8.0) 54.8 (4.7) 64.1 (6.1) 
ILE VAL VAL 119 6.3 (0.5) 5.5 (0.6) 5.7 (0.5) 57.8 (8.1) 54.4 (6.4) 67.8 (5.9) 
TYR PHE LEU 117 5.5 (0.6) 5.4 (0.6) 5.4 (0.5) 59.6 (9.0) 59.6 (10.1) 60.7 (9.5) 

ILE PHE PHE 105 6.3 (0.6) 5.5 (0.7) 5.5 (0.6) 54.6 (8.5) 54.9 (7.3) 70.5 (7.2) 
TYR LEU LEU 104 4.9 (0.4) 5.9 (0.5) 5.5 (0.6) 60.9 (8.5) 67.9 (7.1) 51.2 (6.3) 
TYR LEU VAL 98 5.4 (0.6) 5.4 (0.7) 5.5 (0.4) 60.7 (7.6) 59.4 (10.1) 59.9 (10.4) 
PHE ILE ILE 94 5.5 (0.6) 6.3 (0.7) 6.4 (0.9) 66.0 (11.3) 63.1 (8.5) 50.8 (6.7) 
PHE VAL VAL 88 4.9 (0.6) 5.8 (0.5) 5.7 (0.5) 63.5 (10.0) 65.7 (7.7) 50.8 (6.8) 

TYR PHE ILE 85 5.6 (0.5) 5.7 (0.9) 5.8 (0.8) 61.8 (12.1) 59.9 (13.3) 58.2 (9.9) 
TYR PHE VAL 77 5.5 (0.6) 5.5 (0.6) 5.5 (0.7) 59.9 (10.7) 59.3 (10.0) 60.7 (9.9) 
ILE ILE ILE 70 5.5 (0.6) 6.4 (0.5) 7.0 (0.6) 72.1 (6.2) 59.9 (4.5) 48.0 (5.8) 
TYR ILE VAL 69 5.8 (0.9) 5.4 (0.6) 5.9 (0.7) 63.4 (10.6) 55.0 (10.3) 61.5 (11.7) 

VAL PHE PHE 67 5.8 (0.5) 5.0 (0.5) 5.4 (0.5) 59.8 (9.0) 52.3 (6.9) 67.8 (8.0) 
TRP PHE LEU 56 5.5 (0.6) 5.6 (0.6) 5.4 (0.6) 58.7 (8.5) 61.6 (10.3) 59.7 (9.3) 
TYR PHE PHE 53 5.9 (0.5) 5.1 (0.4) 5.5 (0.5) 59.8 (9.2) 52.6 (5.7) 67.5 (8.1) 
LEU VAL ALA 50 5.7 (0.5) 4.7 (0.4) 4.7 (0.4) 53.4 (5.3) 53.1 (6.8) 73.5 (7.7) 
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Relative geometries of the three constituent residues from the perspective of the 

abstract triangle defined above were analyzed by means of two more angles, namely tilt 

and swivel. Dot product of the global Z axis defined on the triangle plane with Z axes 

(Z1, Z2, Z3) of the internal frames of the three residues defines the tilt angle (θt). It 

essentially describes the orientation of the residue (principal) plane (see Materials and 

Methods) with respect to the triangle plane (Figure 13). As is well known, the angular 

distribution of two randomly oriented vectors should fall of as a function of sin θ` dθ`/2 

(where θ` is the angle between the two vectors) (Singh and Thornton, 1985) and the 

deviation of an actual observed distribution from one which is random can be estimated 

by means of χ2. Examination of χ2 of θt shows that for triplet cliques composed of at least 

one aromatic, their corresponding tilt angles (θ1t) exhibit significant deviation from 

randomness. Compositions such as Phe-Leu-Leu (χ2 (θ1t) = 72.1), Phe-Leu-Val (60.0), 

Phe-Ile-Leu (48.5), Tyr-Leu-Leu (46.7), Tyr-Phe-Leu (44.6), Tyr-Ile-Leu (39.0), Phe-Ile-

Val (37.7), Tyr-Leu-Val (35.5) etc (Table 6) indicates a preferred orientation of the 

aromatic ring plane with respect to the global triangle plane.  
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Table 6. χ2 for angular variables for triplet clique compositions exhibiting specific 
geometry. χ2 of tilt angles (θ1t, θ2t, θ3t) and swivel angles (φ1s, φ2s, φ3s) of residues 
constituting the clique (where 1,2,3 corresponds to the same sequence of residues given 
in the table e.g., PHE → 1, ILE → 2, LEU → 3 for the first entry) for compositions 
showing significant deviation in θ1t from a random distribution. χ2

0.05 for three-bin and 
six-bin models are 5.991 and 11.071, respectively. Compositions which have a predicted 
frequency of less than 5 for any particular angular bin, assuming a random distribution 
are marked with an asterisk (*). This minimal number (of data points) is 37 for a 3-bin 
and 74 for a 6-bin model for tilt (θt) angles and 30 for a 6-bin model for swivel (φs) 
angles.  
 

Composition 
 

  Frequency 
 

 
χ2(θ1t) 

 
χ2(θ2t) 

 

 
χ2(θ3t) 

 
χ2(φ1s) 

 
χ2(φ2s) 

 
χ2(φ3s) 

 
PHE ILE LEU 276 48.5 11.2 35.8 15.3 14.5 5.8 

PHE LEU VAL 246 60.0 20.6 5.2 14.0 8.5 6.8 

PHE LEU LEU 237 72.1 25.5 13.5 13.9 20.8 3.8 

TYR ILE LEU 151 39.0 2.9 7.3 20.5 16.0 10.0 

PHE ILE VAL 150 37.7 9.3 16.7 19.4 4.9 19.5 

TYR PHE LEU 117 44.6 6.2 2.8 18.5 5.7 10.6 

TYR LEU LEU 104 46.7 15.2 8.6 6.4 5.3 16.4 

TYR LEU VAL 98 35.5 8.7 9.5 7.4 3.1 6.6 

PHE VAL VAL 88 21.6 24.9 5.1 14.1 4.2 4.5 

TYR PHE VAL 77 20.3 3.0 4.0 9.0 10.2 2.0 

TYR ILE VAL 69 23.4 2.5 3.8 4.5 2.0 4.7 

TRP LEU LEU 47 29.5* 4.0* 5.1* 3.9 17.7 2.9 

     TRP LEU VAL 41 23.9* 5.3* 3.0* 6.3 6.3 3.9 

 

The actual distribution of the angles (θt) shows the angular bins 60-90°, 90-120° 

to be preferentially populated (with respect to a random distribution) in contrast to ranges 

0-30°, 150-180°, 30-60°, 120-150°, which exhibit a corresponding depletion (Table 7).  
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Table 7. Distribution in θ1t for triplet clique compositions exhibiting high χ2. 
Angular distribution of θ1t in different angular bins (3-bin models for Phe and Tyr and 6-
bin model for Trp: 30° bins) for compositions that have shown significant deviations 
from a random distribution: 
 

  
% Occupancy in bins with θ (deg.) range 

 
Composition 

 
χ2(θ1t) 

 
0-30 

 
30-60 

 
60-90 

 
90-120 

 
120-150 

 
150-180 

 
Random (6bin):  6.7 18.3 25.0 25.0 18.3 6.7 
Random (3bin):  13.4 36.6 50.0 - - - 

        

PHE ILE LEU 48.5 4.0 26.1 69.9 - - - 

PHE LEU VAL 60.0 4.5 21.1 74.4 - - - 

PHE LEU LEU 72.1 2.1 21.1 76.8 - - - 

TYR ILE LEU 39.0 2.0 23.8 74.2 - - - 

PHE ILE VAL 37.7 4.0 21.3 74.7 - - - 

TYR PHE LEU 44.6 1.7 17.9 80.4 - - - 

TYR LEU LEU 46.7 0.0 17.3 82.7 - - - 

TYR LEU VAL 35.5 2.0 18.3 79.7 - - - 

PHE VAL VAL 21.6 0.0 28.4 71.6 - - - 

TYR PHE VAL 20.3 3.9 20.8 75.3 - - - 

TYR ILE VAL 23.4 1.4 20.3 78.3 - - - 

TRP LEU LEU 29.5 0.0 2.1 44.7 44.7 6.4 2.1 

TRP LEU VAL 23.9 2.4 7.4 43.9 43.9 2.4 0 
 

Thus, both the angular distribution and visual inspection of the triplet cliques 

indicate that for bulky aromatics, their normals (to the residue plane) tend to be 

perpendicular to the global Z axis, as if the side-chain tends to enclose the volume 

demarcated by the edges of the triangle, rather than penetrating into its perimeter (Figure 

2). The other residues (Ile, Leu, Val) however did not exhibit any consistent specificity in 

their tilt.  

 

In order to investigate the rotation of the residue planes (XY plane of the residue-internal 

frames) about an axis parallel to their own internal Z, the component of the global Z axis 
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of the triangle was projected onto the respective planes and the orientation of this vector 

(Zp) with respect to the internal X axis (defined as the swivel angle φs ranging from 0-

360°) was computed. Since the angle φs is restricted to a plane, each quadrant is expected 

to be equally populated for a random distribution. χ2 in φs did not appear to show any 

significant preferences for any residue. Therefore, for a given tilt, the residue plane can 

adopt multiple orientations about an axis perpendicular to it. 

    

                   

Figure 13. Tilt and Swivel angles: The tilt angle defined to be the relative orientation of 
the residue principal plane with respect to the triangle plane whereas the swivel angle is 
the rotation of the residue principal plane about an axis perpendicular to it.  
 

3.4. Packing Density: 

Investigations were also carried out to quantify local packing densities (see 

Materials and Methods, section: Packing density) in and around triplet cliques and also 

in their absence. Plots of packing density (f(x)) versus burial ratio (x) (see Materials and 

Methods, section: Burial ratio) exhibited an almost identical correlation for all the 

residue types (Figure 14), decaying as a cubic polynomial 



82 
 

( dxcxbxaxf  ...)( 23
), demonstrating loose packing with higher exposure 

to the solvent. 

           

      

Figure 14. Packing density as a function of burial ratio. Packing density decays with 
increasing burial ratio (which is an index of the exposure to the solvent) following a 
cubic polynomial (plotted for tyrosine). 
 

Networks were distributed into two major categories, those with triplet cliques 

and those devoid of them. The former were further subcategorized into the set of clique-

nodes alone and that of the other non–clique members. It was evident from the results 

that the clique-nodes are predominantly completely buried (burial ratio <= 0.05) and thus 

on an average, more tightly packed than the other non-clique members whose average 

exposure to the solvent was consistently found to be higher (Figure 15). These regions of 

high local packing densities occur at or near the cliques with gradual decrease at the 

periphery. On the other hand, networks devoid of triplet cliques are on an average less 

tightly packed as a consequence of higher exposure to solvent.  
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Figure 15. Nodes of a clique exhibit greater propensity to get completely buried. Percentage 
fraction of individual residues categorized into clique-nodes (dark gray), non-clique 
nodes of clique containing networks (gray) and nodes of networks devoid of cliques 
(light gray) sorted according to their exposure to solvent in terms of burial ratio: (A). for 
burial ratio < = 0.05 (completely buried), (B). for 0.05 < burial ratio < = 0.15 (partially 
buried with lower exposure to the solvent), (C). for 0.15 < burial ratio < = 0.3 (partially 
buried with higher exposure to the solvent). 
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4. Conclusion 

               The chapter is based on the confluence of two related though distinct ideas, (1) 

some network topologies are preferred within protein interiors, leading to the concept of 

packing motifs (2) the ‘jigsaw puzzle’ model can be successfully extended into the 

domain of protein contact networks. The implementation of both these ideas depends 

partly on representing the internal architecture of proteins in terms of surfaces rather than 

point atoms. A previous study from this laboratory provided simple well defined criteria 

to identify those contacts which definitely constrain inter-residue geometry of the 

associating amino acid side chains (Banerjee et al., 2003). Networks based on surface 

contacts (with appropriate cut offs on Sm and Ov) is in effect a straightforward extension 

of the jigsaw puzzle model. In the search for compositional or geometrical bias, surface 

contact networks appear to be indispensable. In particular, triplet cliques composed 

exclusively of hydrophobic residues had a frequency 3 fold higher in ASCN than APCN 

starting from a comparable (total) number of triplet cliques. Furthermore, compositional 

preferences along with strong geometrical constraints were far better explored by 

surfaces than point atoms. One feature which appears to be more or less conserved in 

surface contact networks (irrespective of the cutoff criteria in surface complementarity 

and overlap) is the almost ubiquitous presence of smaller networks (3-10 nodes) in all 

proteins which probably coalesce to produce larger networks specific to the particular 

folds. Thus, the distribution in network sizes and topologies appear to favor a nucleation-

condensation phenomenon in protein packing wherein open linear chains, closed triplet 

cliques and other closed ring topologies could serve as basic packing units which could 

either get linked or recruit neighboring residues to grow into networks of larger size. This 

notion of packing units led to the definition of ‘packing motifs’, which could serve as a 

‘basis set’ in the assembly of extended graphs. Based on these basis set of motifs, graphs 

were organized into families (or set of similar graphs with gradual addition of nodes 

following a path such that the core topology remains unaltered) and it soon became clear 

that some families were overwhelmingly preferred in protein topological space. These 

families emanated from the ‘minimally connected’ open linear chains and three residue 
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cliques (regarded as clustering units) and cast their dominant influence in frequency 

distribution of motifs. Other families occurred with such abysmally low frequencies that 

they could be considered oddities rather than the rule. Thus, in accord with the inductive 

approach of the current work, it was felt that larger graphs (n > 10) would either fall into 

pre-existing families or could be assembled by known motifs or their variants. This 

possibility was explored for networks of 15 nodes and the observations tended to support 

the hypothesis. The next step was to enquire whether packing motifs exhibited any 

preferences in terms of their constituent residues and geometry. For this, triplet cliques 

were selected due to their ubiquitous presence primarily as induced subgraphs embedded 

in larger graphs. It soon became evident that in the sub-space of hydrophobic residues, 

regular trends of propensities favoring specific residues or their combination do indeed 

exist and certain geometrical features exhibit very strong constraints (especially the 

approximately equilateral triangle connecting the three residue-origins and the tilt angles 

of aromatic residues).  
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Chapter 3  

 

 

 

 

 

Probing Electrostatic Complementarity 

within protein interiors 
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1. Introduction 

         As has been discussed in the chapter 1, complementarity in biomolecular 

recognition has a dual aspect and the concept appears to be particularly appealing for 

protein-protein interactions, due to their large interfacial surface areas (~1600 Å2 on 

average) buried upon stereo-specific associations. The earlier chapter (Chapter 2) 

described the specific modes of side-chain packing geometry explored within the protein 

interior probed by surface complementarity. The other aspect of this specific match 

between the two interacting surfaces is the complementarity mediated by non-local long-

range electric fields due to charged or partially charged atoms. Once the solution 

continuum electrostatic model (Gilson et al., 1988) became available for proteins, 

electrostatic potentials were calculated for many protein structures (Green and Tidor, 

2005; Morreale et al., 2007; Radhakrishnan and Tidor, 2008; LeMaster et al., 2009; 

Shibata et al., 2009) by iteratively solving the Poisson-Boltzmann equation (PBE) as 

implemented in the program DelPhi (Nichollos and Honig, 1991). In 1997, 

complementarity in both charge and electrostatic potential were first probed at protein-

protein interfaces (McCoy et al., 1997), and the complementarity was found to be 

significant for potential rather than charge. A partially desolvated model (a protein is 

partially desolvated by the volume of the other protein in the complex, thus, leaving a 

low dielectric region in the close vicinity of the interacting molecule) was also preferred 

as a more accurate and suitable method to compute electrostatic potential at protein-

protein interfaces than a fully solvated model (McCoy et al., 1997). In this chapter, the 

computation of complementarity in electrostatic potential between buried amino acids 

and the rest of the polypeptide chain has been discussed.    

 

       One central problem for continuum electrostatic calculations is the precise 

assessment of the dielectric within proteins. As is well known, dielectric of a medium is 

contributed by induced polarization and dipolar reorientation (Gilson and Honig, 1986). 

Generally, the interior of a protein is considered to have a low (εp = 2 to 4) dielectric 

which significantly increases at solvent exposed surfaces (εp = 20 to 40). External 
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dielectric of the surrounding aqueous solvent is very high (generally set to 80) and 

primarily contributed by high degree of dipolar rotations (Gilson and Honig, 1986). 

Dipoles in proteins are polar substituents, primarily found at backbone amide 

(…CO=NH…) and polar side-chains. Being constrained within the protein structure, they 

have low degree of freedom particularly at the interior of the molecule leading to the 

characteristic low internal dielectric (Gilson and Honig., 1986). However, the degree of 

freedom increases with increasing solvent exposure and so does the dielectric at the 

solvent exposed residue surfaces. Another related problem is the ionic strength of counter 

ions in the surrounding aqueous medium of the protein which is related to the choice of 

whether linear or non-linear methods to solve the Poisson-Boltzmann potential will be 

appropriate. The original non-linear PBE is implemented for multi-dielectric systems 

with defined charge densities contributed both by the protein and the counter-ions, 

whereas, for systems, that do not involve high charge densities, a simplified linearized 

form of the PBE is preferred and more rapidly evaluated (Mandell et al., 2001). Both 

these problems were adequately addressed in the course of the calculation, details of 

which will be found below. In parallel, surface complementraity was also estimated for 

interior residues of proteins for sake of comparison of the two (short and long range) 

complementarity measures.  

 

1. Materials and Methods 

2.1. Databases  

A subset of the database, DB1 discussed in the earlier chapter (chapter 2), 

consisting of 400 polypeptide chains (DB2) was assembled by removing proteins with 

deeply embedded prosthetic groups (e.g., cytochromes) and any missing atoms. DB2 

(composed of 65 all α, 70 all β, 106 α|β, 124 α+β and 35 multi-domain proteins : see 

Supplementary Information in the CD enclosed) was used in the calculation of 

electrostatic complementarity (Em) of amino acid residues and their related statistics. Of 

these, 62 proteins were found to contain metal ions as an integral part of their structure. 
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Hydrogen atoms were geometrically fixed to all structures by the program REDUCE 

(Word et al., 1999).   

 

2.2. Partial Charge Assignment  

Prior to the calculation of electrostatic potential, partial charges and atomic radii 

for all protein atoms were assigned from the AMBER94 all atom molecular mechanics 

force field (Cornell et al., 1995). Asp, Glu, Lys, Arg, doubly-protonated histidine (Hip) 

and both the carboxy, amino terminal groups were considered to be ionized. 

Crystallographic water molecules and surface bound ligands were excluded from the 

calculations and thus modeled as bulk solvent. Ionic radii were assigned to the bound 

metal ions according to their charges (Shannon, 1976). 

 

2.3. Van der Waals Surface and solvent accessibility  

Van der Waals surfaces of the polypeptide chains were sampled at 10 dots / Å2. 

The details of the surface generation have been discussed in a previous chapter (Chapter 

2). The exposure of individual atoms to solvent was estimated by rolling a probe sphere 

of radius 1.4 Å over the protein atoms (Lee and Richards, 1971) and burial (Bur) of 

individual residues was estimated by the ratio of solvent accessible surface areas of the 

amino acid X in the polypeptide chain to that of an identical residue located in a Gly–X–

Gly peptide fragment with a fully extended conformation.  

 

2.4. Calculation of Electrostatic Potential  

The finite difference Poisson–Boltzmann method as implemented in Delphi 

(version 4) (Gilson et al., 1988) was used to compute the electrostatic potential of the 

molecular surface along the polypeptide chain. The protein interior was considered to be 

a low (dielectric constant of 2) and the surrounding solvent, a high dielectric medium 

(dielectric constant of 80). Ionic strength was set to zero as adoption of physiological 

strength has been found to have little effect on the final electrostatic solution 

(Radhakrishnan and Tidor, 2008; Jackson and Sternberg, 1994) and calculations 

were performed at 298 K. The dielectric boundary and the partial charges were mapped 
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onto a cubic grid of size either 151× 151 × 151 or 201 × 201 × 201 grid points / side, the 

latter for those proteins which exhibited pronounced asymmetry in their physical 

dimensions. The percentage grid fill was set to 80% with a scale of 1.2 grid points / Å. 

Boundary potentials were approximated by the Debye–Huckel potential of the dipole 

equivalent to the molecular charge distribution. A probe radius of 1.4 Å was used to 

delineate the dielectric boundary. The linearized Poisson-Boltzmann equation was then 

solved iteratively until convergence; the number of cycles to convergence being 

automatically determined by the program (the convergence threshold based on the 

maximum change in potential being set to 0.0001 kT/e) and monitored by examining a 

plot of convergence in the output log file.  

 

2.5. Electrostatic Complementarity (Em) at the interface 

Delphi requires a set of surface points on which the electrostatic potentials are to 

be computed along with a set of atoms contributing to the potential. Subsequent to the 

generation of the van der Waals surface of the entire polypeptide chain, the dot surface 

points of the individual amino acids (targets) were identified and fed to the program 

along with the selected set of (charged) atoms. The electrostatic potential for each residue 

surface was then calculated twice, 1) due to the atoms of the particular target residue and 

2) from the rest of the protein excluding the selected amino acid. In either case, the atoms 

not contributing to the potential (dummy atoms) were only assigned their radii with zero 

charge, to maintain the scaling and orientation of the molecule on the grid. Thus each dot 

surface point of the (selected) residue was tagged with two values of electrostatic 

potential. Adapted from the function EC, originally proposed by McCoy et al. (for 

protein-protein interfaces) (McCoy et al., 1997), electrostatic potential complementarity 

(Em) of an amino acid residue (within protein) was then defined as the negative of the 

correlation coefficient (Pearsons) between these two sets of potential values,  
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where, for a given residue consisting of a total of N dot surface points, )( i  is the 

potential on its ith point realized due to its own atoms and )`(i , due to the rest of the 

protein atoms,   and ` are the mean  potentials of )( i , i = 1…N and )`(i , i = 1…N 

respectively. 

Subsequent to the calculation of electrostatic potentials, the values corresponding 

to N dot surface points were also divided into two distinct sets, based on whether the dot 

point was obtained from main chain or side chain atoms of the target residue and Em 

calculated separately for each set. Thus for a given residue, electrostatic potential 

complementarity was estimated for the entire residue (
all

mE , as described above), the side 

chain surface points (
sc

mE ) and the main chain surface points (
mc

mE ). 

 

2.6. Surface Complementarity (Sm) at the interface 

The calculation of surface complementarity has been discussed extensively  in the 

previous chapter (Chapter 2). Briefly, surface complementarity (Sm) can be calculated 

between the side chain surface points of a target residue and the all other dot points in its 

immediate neighborhood (within a distance of 3.5 Å), contributed by the rest of the 

protein. Any dot surface point (which is essentially an area element) is characterized by 

its coordinates (x, y, z) and the direction cosines of its normal (dl, dm, dn). The surface 

complementarity measure (Sm) is then defined (following Lawrence and Colman 

(Lawrence and Colman., 1993)) to be the median of the distribution {S(a,b)}, S(a,b)  

being calculated by  the following equation: 

 

                                 ).( exp .  ),(
2

abba
dwbaS  nn                                          (2) 

 

where a
n  and b

n  are two unit normal vectors, corresponding to the dot surface point a 

(located on the side chain surface of the target residue) and b (the dot point nearest to a, 

within 3.5 Å) respectively, with dab the distance between them and w, a scaling constant 

set to 0.5. Subsequent to identifying nearest neighbors, the side chain surface points of 
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the specified residue can also be partitioned into two sets by virtue of their neighbors 

coming from either side chain or main chain atoms, and Sm calculated separately for each 

set. Thus, every target residue (side chain) has three measures of Sm based on the choice 

of its nearest neighbors (surface points), whether obtained from side chain (
sc

mS ), main 

chain (
mc

mS ) atoms alone or all atoms (
all

mS ). Since glycines lack any non-hydrogen side 

chain atom; they were excluded as targets from all calculations.  

 

 

2. Results and Discussion  

3.1. Independence of electrostatic potential on ionic strength 

Linearized Poisson-Boltzmann equation (LPBE) as implemented in Delphi 

(Nichollos and Honig, 1991) was iteratively solved until convergence to compute the 

electrostatic potential at the protein interior and estimation of electrostatic 

complementarity (Em) adapted (see Eq. 1) from a method proposed by McCoy et al. for 

protein-protein interfaces (McCoy et al., 1997). Nonlinear Poisson-Boltzmann equation 

at non-zero ionic strengths is preferred for highly charged molecules like DNA 

(Nichollos and Honig, 1991), microtubules and ribosomal subunits (Baker et al., 2001). 

Globular proteins, however, have appreciably low net charge densities and LPBE has 

been used extensively to compute electrostatic potentials at protein-protein interfaces and 

solvent exposed residue-surfaces (Radhakrishnan and Tidor, 2008; Green and Tidor, 

2005). Electrostatic potentials estimated by nonlinear PBE (in a trial calculation 

involving 150 polypeptide chains) under physiological counter-ionic strength (0.15 M 

NaCl, ion exclusion radii: 2.0 Å) were virtually identical to those calculated by LBPE 

(Figure 1). Similar results were also previously obtained (Jackson and Sternberg, 

1994; Radhakrishnan and Tidor, 2008) where calculations using LPBE and non-linear 

PBE with nonzero (physiological) ionic strength were in good agreement for biologically 

relevant charge magnitudes.  
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Figure 1. Electrostatic potentials computed by linearized Poisson-Boltzmaan 
equation (at zero ionic strength) and non-linear PBE at physiological counter-ionic 
strength (0.15 M NaCl) are virtually identical. Potentials calculated on individual 
surface points of a completely buried asparagine (58-Asn: 2HAQ) plotted in blue: LPBE; 
black: nonlinear PBE. The plot shows practically identical values in potential (obtained 
from the two methods) realized due to the atoms of the selected residue. Similar 
agreement has also been obtained for potentials realized due to the rest of the charged 
protein atoms.  
 
 
3.2. Invariance of electrostatic complementarity on the internal dielectric  

Em was estimated for all residues at the protein interior (burial ≤ 0.30; see 

Materials and Methods) from a database of 400 polypeptide chains (DB2). In order to 

test the sensitivity of Em with respect to the internal dielectric of the continuum (εp), all 

calculations were repeated thrice setting εp to 2, 4 and 10 respectively. The root mean 

square deviations between these three sets of Em values for different residues were 

negligible, indicating the invariance of Em at least in the commonly used ranges of εp 

(Figure 2). Identical calculations performed with higher internal dielectric (εp = 20 & 40) 

also preserved the overall trends in the results. It should be noted that Em estimates the 

correlation between potentials generated by the two sets of atoms (over a collection of 

surface points), regardless of their magnitude. 
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Figure 2. Variation in the internal dielectric of the continuum does not alter 
electrostatic complementarity for interior residues. Electrostatic potentials computed 
at the commonly used ranges of internal dielectrics: εp = 2 (A), 4 (B), 10 (C) for a 
completely buried asparagine (58-Asn: 2HAQ) (blue: due to the atoms of the selected 
residue, red: due to the rest of the charged protein atoms). As expected, change in εp 
changes merely the scale of the potentials thereby leading to conserved Em values.  
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3.3. Anti-correlated surface electrostatic potential at the protein interior  

Prior to statistical analysis, all completely / partially buried (target) residues were 

distributed in three burial bins (burial: 0.0-0.05, 0.05-0.15, 0.15-0.30, see Materials and 

Methods). Enumeration of the average Em values, in each burial bin for different amino 

acids (targets), calculated over the entire residue surface ( all

m
E ), revealed a fairly uniform 

distribution among the different residues, within the range ~ 0.5 – 0.7 (Table 1). The 

high positive values of 
all

mE  throughout the protein interior suggest that individual 

residues buried within proteins have anti-correlated (complementary) surface electrostatic 

potentials (Figure 3) similar to protein-protein interfaces (McCoy et al., 1997).  

 

Figure 3. Molecular surface of an individual buried residue (target) exhibiting anti-
correlated (complementary) electrostatic potentials. The figure shows the van der 
Waals surface (displayed as non-bonded spheres) of a completely buried asparagine (58-
Asn from 2HAQ) along with its own atoms accompanied by a  few more residues along 
the polypeptide chain as representative of the ‘rest of the protein atoms’ (sticks). Atoms 
(along with their interconnecting bonds) are colored by ‘bright yellow’ when ‘charged’ 
and by ‘pale green’ when ‘uncharged’. Surface coloring follows standard conventions 
where patches of positive potentials are colored by ‘blue’, negative potentials by ‘red’ 
and neutral (0.0 ± 0.5 kT/e) by ‘cyan’. (A) shows potentials realized due to the charged 
atoms of the residue itself whereas (B) shows potentials due to the rest of the charged 
protein atoms. Figure constructed by PyMol [http://www.pymol.org/]. 
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In fact, 
all

m
E  for hydrophobic residues were comparable to those for polar and 

charged amino acids. From these observations, it was thought that the main chain surface 

points could be contributing predominantly to 
all

mE , especially for hydrophobic residues. 

In order to test this hypothesis, the surface points were segregated by virtue of their 

residence on main chain / side chain atoms and Em calculated separately for each set, 

namely, 
sc

mE , 
mc

mE  for side and main chain surface points respectively. As expected, 
mc

m
E  

were again uniform for all the amino acids and comparable in magnitude to 
all

m
E . 

Interestingly, even for hydrophobic residues, 
sc

m
E  were also found to exhibit fairly 

significant values. However, differences were observed in 
sc

m
E , between hydrophobic 

(Val: 0.48, Leu: 0.46, Ilu: 0.48, Phe: 0.41) and charged / polar residues (Asn: 0.67, Gln: 

0.64, Asp: 0.61, Glu: 0.63, Lys: 0.62, Arg: 0.56), though within one standard deviation (~ 

0.1 – 0.25) (Table 1). Somewhat reduced values were obtained for sulphur containing 

amino acids (Cys: 0.34, Met: 0.32) and proline (0.34). A similar pattern was observed in 

all three burial bins indicating that within protein interior, the distribution in Em appear to 

be independent of the exposure of a residue to solvent.  
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Table 1. Native electrostatic complementarities of completely buried residues: 
Average Em and their standard deviations (in parentheses) for different residues in the 1st 
burial bin (0.0 ≤ Bur ≤ 0.05) calculated from all atoms on (1) the entire residue surface 

(
all

m
E ), (2) on side chain surface (

sc

m
E ) and (3) on main chain surface (

mc

m
E ). 

 

Residue all

m
E  

sc

m
E  

mc

m
E  

ALA 0.68 (0.17) 0.48 (0.25) 0.72 (0.17) 
VAL 0.62 (0.16) 0.48 (0.18) 0.72 (0.16) 
LEU 0.61 (0.16) 0.46 (0.19) 0.73 (0.16) 
ILE 0.61 (0.16) 0.48 (0.17) 0.72 (0.16) 
PHE 0.56 (0.15) 0.41 (0.16) 0.70 (0.17) 
TYR 0.58 (0.15) 0.50 (0.19) 0.69 (0.18) 
TRP 0.57 (0.15) 0.50 (0.17) 0.68 (0.20) 
SER 0.64 (0.18) 0.59 (0.27) 0.67 (0.18) 
THR 0.62 (0.16) 0.55 (0.23) 0.68 (0.18) 
CYS 0.51 (0.18) 0.34 (0.22) 0.66 (0.21) 
MET 0.45 (0.13) 0.32 (0.16) 0.72 (0.16) 
ASP 0.63 (0.22) 0.61 (0.26) 0.62 (0.17) 
GLU 0.64 (0.25) 0.63 (0.28) 0.66 (0.19) 
ASN 0.68 (0.17) 0.67 (0.22) 0.68 (0.17) 
GLN 0.66 (0.17) 0.64 (0.21) 0.70 (0.18) 
LYS 0.72 (0.17) 0.62 (0.22) 0.75 (0.15) 
ARG 0.68 (0.16) 0.56 (0.19) 0.75 (0.15) 
PRO 0.53 (0.20) 0.34 (0.23) 0.65 (0.19) 
HIS 0.54 (0.26) 0.50 (0.28) 0.65 (0.21) 

 

3.4. Contribution of the native main-chain trajectory on Electrostatic 

Complementarity  

In order to assess the relative contribution of side or main chain atoms to Em, four 

more sets of calculations were performed based on the choice of residue surface (target: 

side chain / main chain) on which to calculate the electrostatic potentials and the atoms 

(side chain / main chain) contributing to the potential.   

S1: Main chain surface, main chain atoms;  

S2: Side chain surface, main chain atoms;  

S3: Side chain surface, side chain atoms;  
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S4: Side chain surface, side chain atoms of the target and all atoms from the ‘rest of the 

polypeptide chain’.  

But for the choice of surfaces and atoms the method for calculating Em was 

identical to the one outlined above. As expected, S1 gave a uniform distribution in m
E  

with elevated values for all residues (Table 2). For S2, fairly significant values of m
E  

were still retained for hydrophobic residues (Ala: 0.43, Val: 0.44, Leu: 0.42, Ile: 0.43, 

Phe: 0.36, Met: 0.38), which is a reflection of the long range electric fields generated by 

the main chain atoms overwhelmingly contributing to the complementarity attained on 

hydrophobic side chain surfaces. This was confirmed by the comparison of m
E  in S2 and 

sc

m
E  whereby both sets of values were almost identical for hydrophobic residues (Table 1 

& Table 2), while, polar / charged residues exhibited a marked reduction in S2 compared 

to 
sc

m
E , since the contribution of side chain atoms carrying high partial charges were 

disregarded in S2. For both S3 and S4, m
E  for hydrophobic residues were practically 

negligible (Table 2), whereas polar / charged residues gave consistently high values for 

S4, while distinctly reduced for S3. The substantial increase in m
E  for S4 relative to S3 

(except for alanine) was indicative of the considerable role being played by the main 

chain atoms (contributed by the rest of the polypeptide chain) in the overall determination 

of m
E . This holds true even for hydrophilic amino acids where the main chain atoms 

contribute appreciably to the neutralization of the electric fields generated by polar / 

charged side chain atoms.  
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Table 2. Assessment of the relative contributions of main chain and side chain atoms 

on electrostatic complementarity. Average Em ( mE ) and their standard deviations (in 
parentheses) for different residues (0.00 ≤ Bur ≤ 0.05) calculated from different 
combinations of atomic sets and surfaces: S1: main chain atoms (target) versus main 
chain atoms (‘rest of the protein’) on main chain surface (of the target residue); S2: main 
chain atoms (target) versus main chain atoms (rest) on side chain surface (target). S3: 
side chain atoms (target) versus side chain atoms (rest) on side chain surface (target); S4: 
side chain atoms (target) versus all atoms (rest) on side chain surface (target). 
 

Residue 
mE  

 S1  S2  S3 S4 
ALA 0.63 (0.25) 0.43 (0.22) -0.04 (0.24) -0.08 (0.18) 
VAL 0.65 (0.22) 0.44 (0.23) -0.02 (0.25) 0.15 (0.19) 
LEU 0.65 (0.22) 0.42 (0.24) 0.01 (0.26) 0.14 (0.21) 
ILE 0.65 (0.23) 0.43 (0.22) -0.01 (0.28) 0.14 (0.24) 
PHE 0.63 (0.24) 0.36 (0.28) 0.13 (0.16) 0.22 (0.17) 
TYR 0.61 (0.25) 0.33 (0.27) 0.25 (0.27) 0.43 (0.22) 
TRP 0.59 (0.28) 0.28 (0.26) 0.30 (0.22) 0.42 (0.19) 
SER 0.53 (0.28) 0.25 (0.34) 0.24 (0.37) 0.53 (0.28) 
THR 0.55 (0.28) 0.30 (0.29) 0.16 (0.34) 0.45 (0.28) 
CYS 0.58 (0.27) 0.36 (0.23) 0.06 (0.29) 0.18 (0.25) 
MET 0.64 (0.23) 0.38 (0.22) 0.12 (0.22) 0.21 (0.17) 
ASP 0.47 (0.30) 0.17 (0.28) 0.27 (0.41) 0.55 (0.33) 
GLU 0.56 (0.28) 0.27 (0.28) 0.31 (0.42) 0.54 (0.37) 
ASN 0.54 (0.27) 0.23 (0.30) 0.33 (0.38) 0.64 (0.23) 
GLN 0.57 (0.29) 0.29 (0.28) 0.32 (0.37) 0.60 (0.24) 
LYS 0.62 (0.24) 0.29 (0.23) 0.40 (0.37) 0.58 (0.24) 
ARG 0.59 (0.25) 0.23 (0.22) 0.28 (0.30) 0.53 (0.21) 
PRO 0.49 (0.26) 0.25 (0.28) -0.15 (0.35) -0.05 (0.28) 
HIS 0.55 (0.29) 0.30 (0.28) 0.28 (0.36) 0.49 (0.31) 

 

 It is thus evident that, the long range electric fields generated by main chain atoms 

cast their shadow over the side chain surface in such a manner, that all residues regardless 

of their hydrophobicity and burial attain a fairly uniform level of overall 

complementarity. Polar / charged (side chain) atoms of hydrophilic residues additionally 

contribute to the elevated complementarity attained on their side chain surfaces.   
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3.5. Comparison of surface and electrostatic complementarity for buried residues 

         To the best of our knowledge this is the first time that electrostatic complementarity 

has been calculated within proteins. In parallel, surface complementarity has also been 

computed for interior residues in order to compare between the two (short-range and 

long-range) complementarity measures. The results show that one of the universal 

characteristics of correctly folded proteins is the almost uniformly elevated values in 
sc

mS  

and 
sc

mE  attained by all deeply buried residues (Figure 4).  

 

 

           

 

Figure 4. Trends in surface and electrostatic complementarities for deeply buried 

amino acid side chains. Mean 
sc

m
S  (black), 

sc

m
E  (gray), plotted as filled thick bars along 

with their standard deviations (represented by error bars) for different residues in the 1st 
burial bin (0.0 ≤ Bur ≤ 0.05).  
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           However, the constraints in 
sc

mS  appear to be more stringent relative to 
sc

mE , given 

its reduced standard deviation, compared to the latter. The nature of short and long range 

forces which determine the values of 
sc

mS , 
sc

mE  also gives rise to their contrasting features. 

sc

mS  is a function of burial whereas 
sc

mE  is not (Table 3) and the primary determinants of 

sc

mS  are side chain atoms (for all residues) and main chain atoms in the case of 
sc

mE  for 

hydrophobic residues, while both side chain and main chain atoms contribute equally to 

the 
sc

mE  of hydrophilic residues.  

 
Table 3: Comparison of the values between electrostatic and shape 

complementarities: Mean 
sc

m
E , 

sc

m
S  and their standard deviations (in parenthesis) 

tabulated for different amino acid residues distributed in three burial bins (bin1: 0.00 ≤ 
Bur ≤ 0.05; bin2: 0.05 < Bur ≤ 0.15; bin3: 0.15 < Bur ≤ 0.30) where ‘Bur’ stands for the 
burial ratio.   
 

sc

m
E  sc

m
S  

Residue 

bin1 bin2 bin3 bin1 bin2 bin3 
ALA 0.48 (0.25) 0.46 (0.25) 0.50 (0.26) 0.53 (0.09) 0.43 (0.12) 0.30 (0.15) 
VAL 0.48 (0.18) 0.45 (0.17) 0.46 (0.18) 0.53 (0.06) 0.45 (0.08) 0.35 (0.11) 
LEU 0.46 (0.19) 0.41 (0.20) 0.43 (0.21) 0.52 (0.06) 0.45 (0.08) 0.34 (0.10) 
ILE 0.48 (0.17) 0.43 (0.18) 0.46 (0.18) 0.53 (0.06) 0.46 (0.08) 0.35 (0.10) 
PHE 0.41 (0.16) 0.40 (0.18) 0.42 (0.18) 0.55 (0.05) 0.49 (0.07) 0.40 (0.10) 
TYR 0.50 (0.19) 0.48 (0.20) 0.45 (0.20) 0.53 (0.05) 0.46 (0.07) 0.36 (0.09) 
TRP 0.50 (0.17) 0.46 (0.20) 0.47 (0.18) 0.55 (0.05) 0.48 (0.06) 0.38 (0.09) 
SER 0.59 (0.26) 0.54 (0.28) 0.54 (0.29) 0.51 (0.09) 0.41 (0.12) 0.28 (0.14) 
THR 0.55 (0.23) 0.54 (0.24) 0.52 (0.26) 0.51 (0.08) 0.42 (0.10) 0.30 (0.12) 
CYS 0.35 (0.22) 0.32 (0.20) 0.29 (0.23) 0.54 (0.08) 0.45 (0.12) 0.34 (0.14) 
MET 0.32 (0.16) 0.28 (0.15) 0.27 (0.15) 0.55 (0.06) 0.46 (0.08) 0.33 (0.11) 
ASP 0.61 (0.26) 0.63 (0.22) 0.63 (0.23) 0.49 (0.07) 0.39 (0.09) 0.26 (0.10) 
GLU 0.63 (0.28) 0.61 (0.22) 0.57 (0.22) 0.49 (0.06) 0.39 (0.08) 0.27 (0.09) 
ASN 0.67 (0.22) 0.63 (0.27) 0.59 (0.25) 0.52 (0.07) 0.43 (0.09) 0.31 (0.11) 
GLN 0.64 (0.21) 0.63 (0.19) 0.53 (0.23) 0.52 (0.06) 0.42 (0.08) 0.30 (0.10) 
LYS 0.62 (0.22) 0.56 (0.25) 0.51 (0.23) 0.50 (0.07) 0.42 (0.08) 0.30 (0.10) 
ARG 0.56 (0.19) 0.60 (0.19) 0.58 (0.19) 0.51 (0.06) 0.43 (0.08) 0.30 (0.10) 
PRO 0.34 (0.23) 0.38 (0.21) 0.40 (0.22) 0.52 (0.07) 0.43 (0.10) 0.31 (0.12) 
HIS 0.50 (0.28) 0.50 (0.25) 0.46 (0.29) 0.53 (0.07) 0.45 (0.08) 0.34 (0.10) 
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4. Conclusion  

             Electrostatic complementarity was computed (for the first time to our knowledge) 

for residues buried within the native protein interior. All amino-acids irrespective of their 

hydrophobicity and charge seemed to attain elevated level of complementarity. The most 

interesting and insightful finding was that the native main-chain trajectories appeared to 

cast their shadow over the entire side-chain in order to attain substantial 

complementarity. This was particularly evident for the case of hydrophobic residues. 

Thus, for a correctly folded globular protein, the entire polypeptide chain meticulously 

balance the electric fields arising from different parts of the folded chain, so as to 

neutralize all destabilizing electrostatic effects. Unlike surface complementarity, being a 

long range effect, electrostatic complementarity also found to be independent of solvent 

exposure of residues.  
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Chapter 4  

 

 

 

 

 

Application of the combined use of shape 

and electrostatic complementarity in 

protein fold recognition: an attempt to 

bridge the gap between binding and folding 
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1. Introduction 

          As discussed in the earlier chapter (chapter 3), surface and electrostatic 

complementarities were probed for residues interior to proteins from a representative 

database. The main idea behind the study was to test whether the concept could serve as a 

common conceptual platform in order to discuss binding and folding. As also briefly 

mentioned in chapter 1, for small molecule ligands or cofactors binding to proteins, the 

concept of complementarity appears to be only partially true. The same ligand not only 

adopts a wide range of conformations upon binding to different proteins, but also the 

binding pocket exhibits variability in their shapes and physicochemical characteristics, 

than can be accounted for by the multiple conformations adopted by the ligand 

(Stockwell and Thronton, 2006; Kahraman et al., 2007; Kahraman et al., 2010). For 

protein-protein interfaces, however, the concept appears to have greater plausibility and 

wider appeal due to the relatively larger size of protein-protein interfaces (~1600 Å2 on 

average) (Lo Conte et al., 1999). A variety of shape correlation and electrostatic 

complementarity measures incorporated into docking algorithms have been effective in 

predicting the interfaces between interacting proteins (Mandell et al., 2001, Heifetz et 

al., 2002). Colman and McCoy along with coworkers have formulated and estimated 

shape correlation (Sc) and electrostatic complementarity (EC) measures for a wide range 

of proteins in quaternary association, protein-inhibitor and antigen-antibody complexes 

(Lawrence and Colman, 1993; McCoy et al., 1997). It thus appears reasonable that 

threshold values of geometric and electrostatic complementarities will have to be 

satisfied for the stereo-specific association between two polypeptide chains. Within 

proteins, surface complementarity (Sm) has been used to enumerate specific modes of 

packing between amino acid side chains (Basu et al., 2011) and somewhat analogous to 

protein interfaces, all residues upon burial achieve uniformly high measures of surface fit 

(Banerjee et al., 2003).  

 

Although the notion of complementarity lends itself naturally to the 

characterization of inter-protein association, of late there have been several suggestions in 
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the literature to approach both binding and folding from a common conceptual platform 

(Bahadur and Chakrabarti, 2009). The native conformation adopted by the polypeptide 

chain leads to the stereo-specific packing of its buried side chains and optimal 

electrostatic interactions due to the strategic three dimensional placements of charges. 

Thus, folding can possibly be described as the self recognition of the polypeptide chain as 

it collapses onto itself. However, one inherent problem in equating binding with folding 

lies in the different characteristics of protein interiors compared to interfaces. Barring 

dimers, interfaces resemble protein surfaces rather than interiors, both in their 

composition and spatial distribution of amino acid residues. Unlike hydrophobic clusters 

found within proteins, nonpolar residues are found in isolation at protein-protein 

interfaces, surrounded by polar or charged amino acids. However, despite these 

differences, the fact remains that both interfacial (Lawrence and Colman, 1993) and 

interior atoms (Banerjee et al., 2003; Basu et al., 2011) have to satisfy fairly stringent 

packing requirements and at least for the interfaces, significant values of electrostatic 

complementarity have been found (McCoy et al., 1997). To explore the similarities or 

equivalence between binding and folding (in terms of complementarity), the current 

chapter describes the design and utility of scoring functions (based on the combined use 

of the two complementarity measures) for fold recognition much similar to functions that 

discriminate between multiple solutions in a protein-protein docking exercise.  

 

2. Materials and Methods  

Calculation of surface (
sc

mS ) and electrostatic (
sc

mE ) complementarity for buried 

and partially buried residues within proteins had been extensively discussed in the 

previous chapter. Two scoring functions (based on the amino acid identity (Res), burial 

(Bur), 
sc

mE  and 
sc

mS ) were formulated in order to identify the native fold amidst a set of 

decoys. Residues that were completely (0.00 ≤ Bur ≤ 0.05) or partially buried (0.05 < Bur 

≤ 0.3) were only considered. Initially the average and standard deviation for both 
sc

mS  

(
sc

m
S , S ) and 

sc

mE  (
sc

m
E , E ) were estimated (over their respective databases DB1 & 
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DB2), separately for different amino acid residues (Ala, Val etc.) distributed into three 

bins based on their burial (bin1: 0.0  ≤ Bur ≤ 0.05;   bin2:  0.05 < Bur ≤ 0.15;   bin3: 0.15 

< Bur ≤ 0.30). The center (mode: scE0 ) and the half width at half maximum height ( E ) 

were also computed for individual residues (in different burial bins) from the normalized 

frequency distributions in 
sc

mE  by numerical curve fitting. For the first measure, )(iS sc

m , 

)(iE sc

m  were computed for all buried residues (i = 1….N; Bur ≤ 0.30) of a given 

polypeptide chain and the following expression was calculated:        
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The second scoring function was based on the conditional probability 

distributions of 
sc

mE  and
sc

mS  for each residue type within a particular burial bin. As in the 

previous case three burial bins were considered. Distributions of 
sc

mE  and 
sc

mS  for a given 

residue type in a particular burial bin were then divided into intervals of 0.05. Conditional 

probability distributions of 
sc

mE  and 
sc

mS  were then defined as:  

 

))(Res(i)(

))(Res(i))((
)})(,Res(i){|)((

iBurN

iBuriCN
iBuriCP

sc

msc

m 


                                               (2) 

 

for the ith residue along the polypeptide chain where 
sc

mC  stands for either 
sc

mE  or 
sc

mS  and 

N denotes the count of residues in the specified sets. 
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Thus, for example,    
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For any given polypeptide chain, the product of the conditional probabilities in 

sc

mS  and 
sc

mE  for each (ith) residue (i = 1…N, Bur ≤ 0.30) were then summed and divided 

by the total number of buried residues (N) giving rise to the following measure:  
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Z-scores corresponding to the native structure (along with its rank) for the 

complementarity scores (CSgl, CScp) were calculated in a multiple decoy set by the 

following equation:  


CSCS

Z native
CS


                                                                                                (4) 

where native
CS  is the score obtained for the parameter CSgl or CScp from the native 

structure and CS and  are the mean and standard deviations for the scores in the decoy 

set. Average CSZ  (<Z>) was calculated for the successful hits (native at rank 1) in a 

decoy set.  

 

3. Results and Discussion  

3.1. Application of Sm and Em in protein fold recognition  

 As described in the earlier section, two scoring functions were designed based on 

the combined use of the complementarity measures obtained for different residues 

distributed in the aforementioned burial bins. Plots of the normalized frequency 

distributions in 
sc

mS , 
sc

mE  for the individual residues in each burial bin (i.e., 

Bur}) ,Res{|( sc

mSP , Bur}) ,Res{|( sc

mEP ) gave characteristic curves (symmetric for 
sc

mS  
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and negatively skewed for 
sc

mE ), which fitted best to Gaussian and Lorentzian functions 

for 
sc

mS  and 
sc

mE  respectively (goodness of fit, R2 ≥ 0.85 for all cases, Figure. 1). From 

these observations, the first scoring function (CSgl) was designed based on Gaussian for 

sc

mS and Lorentzian for 
sc

mE  (see Eq. 3.). The second function (CScp) directly multiplies 

the conditional probabilities Bur}) ,Res{|( sc

mSP and Bur}) ,Res{|( sc

mEP for each residue 

along the polypeptide chain to obtain the joint probability of their co-occurrence. These 

individual probabilities were averaged over all buried residues (Bur ≤ 0.3) in the 

polypeptide chain to give the final score (see Eq. 5.). The conditional probabilities had 

been estimated previously (see Materials and Methods). 

 

 

Figure 1. Normalized frequency distributions of 
sc

mS , 
sc

mE  gives characteristic curves 
which fit best to Gaussian, Lorentzian functions respectively. These normalized 
frequencies for a given burial bin (Bur) and residue type (Res) can also be interpreted as 

conditional probabilities Bur}) ,Res{|( sc

mSP and Bur}) ,Res{|( sc

mEP . (A) the distribution 

in 
sc

mS  for leucine (0.0 ≤ Bur ≤ 0.05) fitted to a Gaussian function (R2 = 0.997) and (B) 

the distribution in 
sc

mE  for asparagine (same burial) fitted to a Lorentzian function (R2 = 
0.948). Similar curves were obtained for all completely / partially buried amino acids for 
all three burial bins.  
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 It is to be noted that both CSgl and CScp are averages of individual scores given by 

all the completely / partially buried residues in a protein and thus are independent of the 

polypeptide chain length. Thus, for any given native structure, one would expect their 

values to cluster around optimum numbers characteristic of native folds. The distributions 

of CSgl and CScp computed for the native folds (in DB2) had a very good linear 

correlation between themselves (R2 = 0.94, Figure 2) and gave mean values of 3.7 (± 

0.437) and 0.015 (± 0.0017) respectively. Thus for the native folds, these functions do 

exhibit a reduced scatter about the mean, whereas for decoys, reduced scores for both the 

functions are to be expected. The decoy sets used to benchmark and validate the scoring 

functions included both single and multiple decoys, with Z–scores being calculated for 

the latter (see Eq. 6.). Since both the knowledge based scoring functions were 

parameterized on crystal structures alone, NMR structures were excluded in their 

validation. 

 

                             

 
Figure 2. The two Complementarity Scores are linearly correlated. The figure shows 
the plot of CSgl versus CScp computed for the 400 native folds (in DB2) linearly fitting to 
each-other (R2 = 0.94). 
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3.2. Identification of the native crystal structure from decoys 

Among the single decoy sets tested, ‘Misfold’ (Holm and Sander, 1992) consists of 26 

pairs of structures. In each pair, the native sequence is threaded onto an unrelated fold to 

generate the decoy. 25 pairs were considered in the calculation (with the exception of 

1CBH which is an NMR structure). The ‘Pdberr’ decoy set (Branden and Jones, 1990) 

consists of three correctly solved X-ray crystal structures along with their erroneous 

decoy counterparts, whereas ‘sgpa’ (Avbelj et al., 1990) contains the experimental 

structure of Streptomyces griseus Protease A (2SGA) and its two corresponding decoys, 

generated by molecular dynamics simulations. For the three data sets both functions 

successfully identified the native structure from their corresponding decoys for all cases 

(Table 1). Comparison with other knowledge based scoring functions (Table 2) shows 

the performance of the complementarity scores in single decoy sets to be as efficient as or 

better than the other functions.  
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Table 1. Performance of CSgl and CScp in single decoy sets. Scores obtained by native 
and decoy structures have been tabulated for both functions in the decoy sets (A) Misfold 
(Holm and Sander, 1992) and (B) Pdberr (Branden and Jones, 1990) and sgpa (Avbelj 
et al., 1990). For (A) Misfold, sequence of a native structure (e.g., 1BP2: 1st row) have 
been threaded onto the template from an unrelated fold (2PAZ) to generate the 
corresponding decoy (1BP2on2PAZ). In (B) MDC1 and MDC2 refer to the two 
molecular dynamic simulation snapshots of 2SGA. The decoy sets have been downloaded 
from the database ‘Decoys ‘R’ Us’: [http://dd.compbio.washington.edu/].  
 

(A). 

CSgl CScp 

Native 
 
 

Decoy 
 
 

Resolution / 
R-factor 

Native decoy native decoy 
1BP2 1BP2on2PAZ 1.7/0.17 2.64 0.88 0.0113 0.0039 
1FDX 1FDXon 5RXN 2.0/0.19 1.91 1.58 0.0071 0.0065 
1HIP 1HIPon 2B5C 2.0/0.24 2.12 0.58 0.0097 0.0024 
1LH1 1LH1on 2I1B 2.0/0.00 2.55 1.05 0.0111 0.0044 
1P2P 1P2Pon1RN3 2.6/0.24 2.08 1.35 0.0085 0.0047 
1PPT 1PPTon1CBH 1.4/0.00 2.37 0.94 0.0103 0.0033 
1REI 1REIon5PAD 2.0/0.24 2.63 0.84 0.0108 0.0038 
1RHD 1RHDon2CYP 2.5/0.00 1.58 0.84 0.0066 0.0035 
1RN3 1RN3on1P2P 1.5/0.22 2.86 1.15 0.0120 0.0047 
1SN3 1SN3on2CI2 1.2/0.19 2.13 0.60 0.0085 0.0032 
1SN3 1SN3on2CRO 1.2/0.19 2.13 0.91 0.0085 0.0034 
2B5C 2B5Con1HIP 2.0/0.16 3.48 0.97 0.0149 0.0034 
2CDV 2CDVon2SSI 1.8/0.18 1.13 0.95 0.0047 0.0033 
2CI2 2CI2on1SN3 2.0/0.20 4.09 1.05 0.0174 0.0045 
2CI2 2CI2on2CRO 2.0/0.20 4.09 0.81 0.0174 0.0032 

2CRO 2CROon1SN3 2.4/0.20 3.49 0.82 0.0130 0.0032 
2CRO 2CROon2CI2 2.4/0.20 3.49 0.92 0.0130 0.0038 
2CYP 2CYPon1RHD 1.7/0.22 2.84 0.84 0.0115 0.0033 
2I1B 2I1Bon1LH1 2.0/0.17 2.90 0.96 0.0119 0.0034 
2PAZ 2PAZon1BP2 1.6/0.18 3.21 1.42 0.0137 0.0053 
2SSI 2SSIon2CDV 2.3/0.19 1.04 0.86 0.0046 0.0036 

2TMN 2TMNon2TS1 1.6/0.18 2.71 0.96 0.0107 0.0037 
2TS1 2TS1on2TMN 2.3/0.23 2.74 1.02 0.0114 0.0039 
5PAD 5PADon1REI 2.8/0.00 2.26 1.06 0.0093 0.0042 
5RXN 5RXNon1FDX 1.2/0.14 2.34 1.31 0.0117 0.0048 
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(B). 

 
CSgl CScp 

Native 
 
 

Decoy 
 
 

Chain length 
 
 Native decoy native decoy 

2F19 1F19 435 2.172 0.617 0.009 0.003 
3HFL 2HFL 556 2.329 1.805 0.009 0.007 
5FD1 2FD1 106 2.951 0.464 0.011 0.002 
2SGA MDC1 181 2.546 1.952 0.011 0.008 
2SGA MDC2 181 2.546 1.754 0.011 0.007 

 

Table 2. Comparison in the performances of different knowledge-based scoring 
functions on single decoy sets. The functions include Rs, Rp (Bahadur and 
Chakrabarti, 2009), RAPD, CDF (Samudrala and Moult, 1998), Surfield (Arab et al., 
2011), Atomic Knowledge Based Potential (AKBP) (Lu and Skolnick, 2001), Residue 
Contact Potential (RCP) (Skolnick et al., 2000) along with the complementarity scores 
(CSgl, CScp) developed in this study. The number of successful hits / total number of trials 
are tabulated. 
 

Scoring Functions 
 

Misfold Pdberr and sgpa 

Rs 24/24 5/5 
Rp 20/24 5/5 

RAPD 24/24 5/5 
CDF 19/24 5/5 

Surfield 23/23 - 
AKBP 24/24 5/5 
RCP 24/24 4/5 
CSgl 25/25 5/5 
CScp 25/25 5/5 

 

 The ‘4-state reduced’ decoy set (Park and Levitt, 1996) consists of 7 sequences 

(chain length ranging from 54-75 residues), each with nearly 600-700 decoys that include 

structures with RMSD (Cα atoms) ranging from 0.8 to 9.4 Å from the native. Out of the 7 

sequences, 6 native structures were correctly identified (rank 1) by CSgl, CScp with 

significant Z-scores (Table 3.A). In the case of 4RXN (all β class), the native structure 

was found to be at ranks 10, 15 respectively for CSgl, CScp. Further investigation revealed 

that 4RXN has negligible side chain packing between its secondary structural elements. 
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The decoy set, ‘Fisa’ (Simons et al., 1997) contains 4 small (43-76 residues) all-α 

proteins with 500 decoys for each set. Major failures were encountered for this decoy set 

where both CSgl and CScp were successful in detecting the native at the top-rank in two 

out of the four proteins (Table 3.B). 1HDD-C was detected at rank 4 (CSgl) and 5 (CScp), 

however, for 1FC2, both the functions failed entirely, leading to insignificant or negative 

Z-scores. This was due to minimal packing between their helices for both these low 

resolution structures (2.8Å). It is notable (Table 4) that for 1HDD-C, 1FC2 and 4RXN 

failure is quite common even for the other functions.   

 
Table 3. Performance of CSgl and CScp in multiple decoy sets of small proteins. 
Results tabulated for the decoy sets (A) 4-state reduced (Park and Levitt, 1996), (B) 
Fisa (Simons et al., 1997). Resol / R stands for resolution / R-factor of the native crystal 
structures whereas Ndec refers to the number of decoys. For (B) Fisa, there are 500 decoys 
for each native structure respectively. All proteins in Fisa belong to the all α class. ZCS 
denotes the native Z-scores for the corresponding functions (CSgl /CScp).  
 
(A). 

 

CSgl 

 

CScp PDB 
ID 

Length 
(aa) 

 class Resol (Å) / 
R 

Ndec RMSD 
(Å) range 
of decoys 

Rank ZCS Rank ZCS 

1CTF 68 α+β 1.70/0.17 630 1.3 - 9.1 1 7.9 1 7.1 
1R69 63 All α 2.0/0.19 675 0.9 -  8.3 1 6.4 1 6.1 
1SN3 65 α+β 1.2/0.19 660 1.3 -  9.1 1 5.6 1 4.7 
2CRO 65 All α 2.4/0.20 674 0.8 -  8.3 1 5.9 1 5.0 
3ICB 75 All α 2.3/0.18 653 0.9 -  9.4 1 6.7 1 4.9 
4PTI 58 α+β 1.5/0.16 687 1.4 -  9.3 1 3.6 1 3.9 

4RXN 54 All β 1.2/0.13 677 1.4 -  8.1 10 2.7 15 2.3 

 

 (B). 

CSgl 

 

CScp PDB ID Length 
(aa) 

Resol (Å) / 
R 

RMSD (Å) range 
of decoys 

Rank ZCS Rank ZCS 

1FC2 43 2.8/0.22 3.1 - 10.5   206 0.2  293 -0.2 
1HDD-C 57 2.8/0.24 2.8 - 12.9 4 3.5 5 3.0 

2CRO 65 2.4/0.20 4.3 - 12.6 1 7.2 1 6.3 
4ICB 76 1.6/0.19 4.8 - 14.1 1 5.8 1 5.1 
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Table 4. Comparison in the performances of different knowledge based scoring 
functions on multiple decoy sets. The functions include DFIRE (Zhang et al., 2004), 
Rosetta (Misura et al., 2006), ModPipe-Pair (MPP), ModPipe-Surf (MPS) (Melo et al., 
2002), TE13, LHL (Li et al., 2003), Force Model (FM) (Mirzaie et al., 2009), DOPE 
(Shen and Sali, 2006), MJ (Miyazawa and Jernigan, 1996), Surfield (Arab et al., 
2011), Rs, Rp (Bahadur and Chakrabarti, 2009) along with the complementarity scores 
(CSgl, CScp). All entries in the table refer to the rank of the native structure as detected by 
the corresponding method.  
 

  

‘Hg_structal’ is a decoy set composed of 29 globins (Samudrala and Levitt, 

2000) where each globin has been built by comparative modeling using 29 other globins 

as templates with their Cα RMSD’s ranging from 1.96 to 8.57 Å. Thus, for each native 

globin chain there are 29 decoys. In 23 out of 29 globins, both CSgl and CScp were able to 

correctly detect the native at the top rank (<Z>: 3.23, 3.24 respectively, Table 5.A). For 

similar decoy sets, ‘ig_structal’ CSgl and CScp were successful in 48 and 50 cases (<Z>: 

3.89, 3.91) out of 61 immunoglobulins, whereas for ‘ig_structal_hires’ (subset of 20 high 

resolution structures), 100 % success was achieved for both (Table 5.B, C).  

Decoy 
Set 
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4state 
reduced 

1CTF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1R69 1 2 1 17 1 1 8 1 1 1 1 19 1 1 

1SN3 1 1 1 7 6 1 23 1 2 1 5 23 1 1 

2CRO 1 5 1 103 1 1 4 1 1 1 1 1 1 1 

3ICB 4 6 15 33 - 5 2 1 - 1 1 6 1 1 

4PTI 1 1 1 71 7 1 13 1 3 1 1 1 1 1 

4RXN 1 1 1 18 16 51 85 1 1 1 1 1 10 15 

Fisa 

1FC2 254 158 491 1 - - 1 357 - 1 - - 
206 293 

1HDD 1 90 293 18 - - 1 1 - 1 - - 
4 5 

2CRO 1 26 11 146 - - 1 1 - 1 - - 
1 1 

4ICB 1 1 196 2 - - 1 1 - 1 - - 1 1 
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Table 5. Performance of CSgl and CScp in decoy sets composed by homology 
modeling. Results tabulated for the decoy sets (A) Hg_structal (Samudrala and Levitt, 
2000), (B) Ig_structal (Samudrala and Levitt, 2000) and (C) Ig_structal_hires 
(Samudrala and Levitt, 2000). Resol / R stands for resolution / R-factor of the native 
crystal structure whereas Ndec refers to the number of decoys. For (A) Hg_structal, (B) 
Ig_structal and (C) Ig_structal_hires there are 29, 61 and 19 decoys for each native 
structure respectively. (A) Hg_structal is constituted of globins whereas (B) Ig_structal 
and (C) Ig_structal_hires contains immunoglobulins. ZCS denotes the native Z-scores for 
the corresponding function (CSgl /CScp). The decoy sets have been downloaded from the 
database ‘Decoys ‘R’ Us’: [http://dd.compbio.washington.edu/]. 
 

(A). 

CSgl 

 

CScp PDB ID Length 
(aa) 

Resol (Å) / 
R 

RMSD (Å) range of 
decoys 

Rank ZCS Rank ZCS 

1ASH 147 2.2/0.18 2.222 -  6.947 1 4.1 1 3.6 
1BAB-B 146 1.5/0.16 0.702 -  6.920 1 3.4 1 3.1 
1COL-A 197 2.4/0.18 12.399 - 30.284 1 4.8 1 4.6 
1CPC-A 162 1.7/0.18 6.835 - 13.957 1 4.6 1 4.5 
1ECD 136 1.4/0.00 1.471 -  6.188 1 3.8 1 4.1 
1EMY 153 1.8/0.15 0.735 -  9.281 1 2.9 1 2.8 
1FLP 142 1.5/0.17 1.734 -  7.227 1 4.1 1 4.1 
1GDM 153 1.7/0.16 2.609 -  8.371 1 3.2 1 3.3 
1HBG 147 1.5/0.15 2.050 -  6.896 1 3.8 1 4.1 
1HBH-A 142 2.2/0.16 0.958 -  6.347 1 1.9 1 2.3 
1HBH-B 146 2.2/0.16 1.024 -  7.330 1 2.3 1 2.4 
1HDA-A 141 2.2/0.19 0.487 -  5.794 1 2.6 1 2.7 
1HDA-B 145 2.2/0.19 0.545 -  5.644 1 2.9 1 2.9 
1HLB 157 2.5/0.15 2.891 -  7.001 1 1.6 1 2.4 
1HLM 158 2.9/0.19 2.973 -  8.737 20 -0.5 17 -0.3 
1HSY 153 1.9/0.16 0.795 -  9.681 1 2.6 1 2.2 
1ITH-A 141 2.5/0.15 1.638 -  6.071 1 4.5 1 4.5 
1LHT 153 2.0/0.18 0.814 -  9.736 1 2.5 1 2.4 
1MBA 146 1.6/0.19 1.829 -  7.314 1 3.9 1 3.8 
1MBS 153 2.5/0.00 1.698 -  9.304 29 -1.2 30 -1.3 
1MYG-A 153 1.8/0.20 0.479 -  9.562 1 2.6 1 2.5 
1MYJ-A 153 1.9/0.21 0.623 -  7.944 1 2.9 1 3.0 
1MYT 146 1.7/0.18 1.014 - 10.043 1 3.0 1 3.0 
2DHB-A 141 2.8/0.00 0.648 -  6.358 14 -0.1 13 0.2 
2DHB-B 146 2.8/0.00 0.858 -  7.062 13 0.2 12 0.3 
2LHB 149 2.0/0.14 3.022 -  8.080 1 2.9 1 3.0 
2PGH-A 141 2.8/0.15 0.707 -  6.485 16 -0.1 14 -0.1 
2PGH-B 146 2.8/0.15 0.769 -  7.479 11 0.4 14 0.2 
4SDH-A 145 1.6/0.16 2.273 -  6.429 1 3.4 1 3.3 
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(B).  

PDB ID Length 
(aa) 

Resol (Å) 
/ R 

RMSD (Å) range 
of decoys 

CSgl 

 

CScp 

Rank ZCS Rank ZCS 

1ACY 232 3.0/0.21 1.167 - 4.455 1 5.7 1 5.7 
1BAF 222 2.9/0.20 1.123 - 3.973 1 3.8 1 4.0 
1BBD 231 2.8/0.19 1.610 - 4.537 1 3.5 1 4.2 
1BBJ 221 3.1/0.18 0.797 - 4.047 1 2.3 1 2.3 
1DBB 231 2.7/0.21 0.993 - 4.203 3 1.9 1 2.2 
1DFB 231 2.7/0.18 1.383 - 4.826 2 1.8 3 1.8 
1DVF 223 1.9/0.19 0.706 - 4.176 1 5.2 1 5.2 
1EAP 225 2.5/0.19 1.557 - 4.537 1 4.9 1 4.7 
1FAI 231 2.7/0.19 1.258 - 4.619 1 3.3 1 3.6 
1FBI 229 3.0/0.19 1.322 - 4.993 2 2.5 1 1.9 
1FGV 227 1.9/0.18 0.977 - 4.502 1 3.7 1 3.7 
1FIG 227 3.0/0.22 1.423 - 4.388 19 0.5 12 0.8 
1FLR 228 1.9/0.19 1.090 - 4.284 1 3.7 1 3.8 
1FOR 225 2.8/0.17 0.998 - 4.200 1 2.6 1 2.9 
1FPT 231 3.0/0.23 0.891 - 4.332 7 1.4 9 0.9 
1FRG 233 2.8/0.19 0.952 - 4.134 1 5.5 1 5.7 
1FVC 229 2.2/0.18 1.505 - 4.970 1 3.8 1 4.1 
1FVD 227 2.5/0.17 0.798 - 4.137 1 3.3 1 3.7 
1GAF 221 2.0/0.24 0.841 - 4.034 1 3.6 1 2.9 
1GGI 226 2.8/0.18 0.978 - 4.247 1 3.2 1 3.5 
1GIG 231 2.3/0.19 1.424 - 4.497 1 5.6 1 5.7 
1HIL 233 2.0/0.19 0.910 - 4.303 1 5.2 1 5.2 
1HKL 221 2.7/0.18 0.762 - 3.996 6 1.5 9 1.2 
1IAI 228 2.9/0.21 1.069 - 4.594 5 1.7 5 1.5 
1IBG 232 2.7/0.20 1.483 - 4.713 1 3.7 1 3.7 
1IGC 227 2.6/0.16 0.960 - 4.237 12 0.9 14 0.8 
1IGF 231 2.8/0.18 0.927 - 4.241 1 3.5 1 3.7 
1IGI 231 2.7/0.17 1.579 - 4.266 1 3.7 1 4.0 

1IGM 227 2.3/0.20 1.077 - 4.146 1 2.0 1 2.5 
1IKF 233 2.5/0.16 1.330 - 5.105 1 4.6 1 4.8 
1IND 222 2.2/0.18 1.183 - 4.213 1 3.7 1 3.5 
1JEL 230 2.8/0.19 1.032 - 4.193 1 3.9 1 3.8 
1JHL 224 2.4/0.21 1.100 - 4.083 1 3.7 1 3.7 

1KEM 231 2.2/0.18 1.386 - 4.671 1 2.2 1 2.2 
1MAM 227 2.5/0.21 1.473 - 4.170 1 3.3 1 3.8 
1MCP 235 2.7/0.22 1.186 - 4.520 1 4.5 1 4.4 
1MFA 229 1.7/0.16 2.053 - 4.805 1 4.6 1 4.7 
1MLB 223 2.1/0.18 0.899 - 4.186 1 3.4 1 3.9 
1MRD 225 2.4/0.19 1.311 - 4.150 1 3.8 1 3.5 
1NBV 232 2.0/0.24 1.205 - 4.237 1 2.6 1 2.4 
1NCB 227 2.5/0.16 1.167 - 4.385 1 3.1 1 3.1 
1NGQ 229 2.4/0.19 1.407 - 4.065 1 3.8 1 3.9 
1NMB 231 2.5/0.21 1.496 - 5.568 1 3.6 1 3.5 
1NSN 224 2.9/0.19 1.163 - 4.033 15 0.8 19 0.5 
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1OPG 232 2.0/0.16 1.379 - 4.795 8 1.1 8 1.1 
1PLG 228 2.8/0.16 1.036 - 4.168 1 4.3 1 3.9 
1RMF 231 2.8/0.18 1.563 - 4.457 7 1.3 8 0.8 
1TET 228 2.3/0.14 0.768 - 4.119 1 4.0 1 4.3 
1UCB 228 2.5/0.20 1.183 - 4.346 1 2.9 1 3.2 
1VFA 224 1.8/0.15 1.135 - 4.080 1 4.7 1 4.6 
1VGE 231 2.0/0.18 1.619 - 5.004 1 5.4 1 5.2 
1YUH 225 3.0/0.19 1.265 - 4.292 11 1.1 30 0.3 
2CGR 228 2.2/0.21 0.925 - 4.226 1 3.7 1 4.3 
2FB4 236 1.9/0.18 1.667 - 6.135 1 4.7 1 4.9 
2FBJ 224 2.0/0.19 1.078 - 4.204 1 4.3 1 4.1 
2GFB 227 3.0/0.21 1.639 - 4.123 1 4.1 1 4.2 
3HFL 223 2.6/0.19 1.512 - 5.056 1 2.7 1 3.6 
3HFM 220 3.0/0.24 1.029 - 3.993 5 1.5 8 1.0 
6FAB 228 1.9/0.20 1.193 - 4.636 1 4.3 1 3.5 
7FAB 219 2.0/0.16 1.845 - 4.547 1 4.7 1 4.8 
8FAB 228 1.8/0.17 1.913 - 6.816 1 4.4 1 4.9 

 

(C). 

PDB ID Length 
(aa) 

Resol (Å) / 
R 

RMSD (Å) range of 
decoys 

CSgl 

 

CScp 

Rank ZCS Rank ZCS 

1DVF 223 1.9/0.19 0.706 - 4.176 1 3.4 1 3.4 
1FGV 227 1.9/0.18 0.977 - 4.502 1 2.9 1 2.9 
1FLR 228 1.9/0.19 1.090 - 4.284 1 3.0 1 3.0 
1FVC 229 2.2/0.18 1.505 - 4.970 1 2.9 1 2.9 
1GAF 221 2.0/0.24 0.841 - 4.034 1 3.1 1 2.8 
1HIL 233 2.0/0.19 0.910 - 4.303 1 3.6 1 3.5 
1IND 222 2.2/0.18 1.183 - 4.213 1 3.1 1 2.9 
1KEM 231 2.2/0.18 1.386 - 4.671 1 2.1 1 2.1 
1MFA 229 1.7/0.16 2.053 - 4.805 1 3.3 1 3.3 
1MLB 223 2.1/0.18 0.899 - 4.186 1 2.6 1 2.8 
1NBV 232 2.0/0.24 1.205 - 4.237 1 2.3 1 2.1 
1OPG 232 2.0/0.16 1.379 - 4.795 1 1.1 1 1.2 
1VFA 224 1.8/0.15 1.135 - 4.080 1 3.2 1 3.2 
1VGE 231 2.0/0.18 1.619 - 5.004 1 3.5 1 3.3 
2CGR 228 2.2/0.21 0.925 - 4.226 1 2.9 1 3.1 
2FB4 236 1.9/0.18 1.667 - 6.135 1 3.3 1 3.4 
2FBJ 224 2.0/0.19 1.078 - 4.204 1 3.1 1 3.1 
6FAB 228 1.9/0.20 1.193 - 4.636 1 2.8 1 2.4 
7FAB 219 2.0/0.16 1.845 - 4.547 1 3.3 1 3.4 
8FAB 228 1.8/0.17 1.913 - 6.816 1 3.2 1 3.5 
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 The ROSETTA all-atom decoy sets are built for small single domain proteins by 

the fragment insertion-simulated annealing strategy. The latest ROSETTA decoy set 

(Tsai et al., 2003) contains over 75000 decoys for 41 proteins (of which 25 are X-ray 

structures, the number of decoys in each set ranging from 1610 to 1934), sampling a wide 

variety of topological folds and polypeptide chain lengths ranging from 35 to 85 amino 

acids. CSgl, CScp were able to rank the native in 23, 24 instances (out of 25). The high 

average Z-scores (7.24, 6.98) also demonstrate the discriminatory ability of both the 

scoring functions (Table 6). The only major failure was encountered for 1CC5 (detected 

at rank: 36, 58) which is a cytochrome C molecule with an embedded Fe+2 containing 

protoporphyrin IX ring. Since only protein atoms were considered, a false picture of 

interior atomic packing was available to the scoring functions. 
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Table 6. Performance of CSgl and CScp in identifying the native crystal structures in 
the Rosetta all atom decoy set (20). Ndec and Resol stands for the number of decoys for 
each native structure and its crystallographic resolution. RMSD refers to the Cα-rms 
deviation of the decoy closest to the native in the set. ZCS denotes the native Z-scores for 
the corresponding function (CSgl /CScp). The dataset was downloaded from: 
http://trimer.tamu.edu/~daniel/decoys_11-14-01.tar.gz.  
 

CSgl 

 

CScp PDB ID Length 
(aa) 

 class Resol 
(Å) 

Ndec RMSD (Å)  

Rank ZCS 

 
Rank ZCS 

1A32 65 All α 2.1 1610 0.90 1 5.3 1 5.0 
1AIL 67 All α 1.9 1807 1.97 1 6.1 1 6.4 
1AM3 57 All α 1.7 1898 1.80 1 7.4 1 6.5 
1BQ9 53 All β 1.2 1825 2.79 1 7.1 1 6.8 
1CC5 76 All α 2.5 1892 4.31 36 1.6 58 1.3 
1CEI 85 All α 1.8 1897 4.57 1 8.6 1 8.5 
1CSP 64 All β 2.45 1809 3.24 1 8.5 1 7.2 
1CTF 67 α|β 1.70 1922 2.66 1 9.7 1 9.1 
1DOL 62 α+β 2.4 1871 3.76 1 7.1 1 6.8 
1HYP 75 All α 1.8 1893 4.05 1 6.3 1 6.1 
1LFB 69 All α 2.8 1893 2.47 1 5.2 1 6.1 
1MSI 60 All β 1.25 1894 5.40 1 10.6 1 10.1 

1MZM 71 All α 1.78 1934 2.69 1 6.1 1 5.8 
1ORC 56 α+β 1.54 1883 2.81 1 8.3 1 9.6 
1PGX 57 α+β 1.66 1851 1.48 1 7.3 1 7.3 
1PTQ 43 All β 1.95 1885 5.42 1 7.1 1 7.1 
1R69 61 All α 2.00 1733 1.38 1 6.0 1 5.7 
1TIF 59 α+β 1.80 1849 2.60 1 8.5 1 9.1 
1TUC 61 All β 2.02 1894 4.48 1 6.6 1 6.6 
1UTG 62 All α 1.34 1897 3.36 1 7.1 1 4.7 
1VCC 77 α+β 1.60 1857 3.85 1 8.1 1 9.0 
1VIF 48 All β 1.80 1896 0.44 1 5.7 1 6.4 
2FXB 81 α|β 0.92 1800 5.48 2 3.3 1 3.7 
5ICB 72 All α  1.50 1870 2.98 1 8.0 1 7.8 
5PTI 55 α+β 1.00 1853 3.94 1 5.9 1 6.1 

 

 CASP9 (Moult et al., 2011) is probably the most challenging test as the decoys 

are the best predicted near-native models submitted by different groups participating in 

the CASP experiment. CASP9 (conducted in July – August, 2010) consisted of 111 valid 

targets with 90 X-ray crystal structures. T0543 (2XRQ) and T0605 (3NMD) were not 

considered in the calculation, the former due to its excessively huge chain length (887 

residues) and the latter being a single standalone helix. For the remaining 88 targets (with 
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a total of 9197 models, chain length ranging from 83 to 611 residues) CSgl and CScp 

detected the native at the top rank in 70, 72 and 85, 86 within rank 5 (<Z>: 3.65, 3.95) 

respectively (Table 7).  

 

Table 7. Performance of CSgl and CScp in CASP9 dataset. CASP9 experiment 
(conducted in July – August, 2010) consisted of 129 accepted targets out of which 18 
were cancelled during the experiment. Of the remaining 111, 90 were X-ray crystal 
structures. T0543-2XRQ and T0605-3NMD were not considered in the calculation, the 
former due to its huge chain length (887 residues) and the latter being a single standalone 
helix. Results are tabulated for all other valid crystal structure targets. Nmod stands for the 
number of ‘first models’ used in the calculations. Resol/Robs represent the 
crystallographic resolution and R-factor (observed) of the native structure respectively. 
RMSD refers to the Cα-rms deviation of the model closest to the native in the set, 
calculated by Dali server (Holm and Rosenstrom, 2010). Nres refers to the number of 
residues to be modeled for each target. Rank and ZCS denotes the native rank and Z-
scores for the corresponding function (CSgl /CScp). For the target T0602-3NKZ, none of 
the models was superposible to the native by Dali server (Holm and Rosenstrom, 2010) 
(RMSD: N/A).  
 

CSgl 

 

CScp Target 
ID 

Nres 
(aa) 

PDB ID Resol (Å) / 
Robs 

Nmod RMSD 
(Å) 

Rank ZCS 

 
Rank ZCS 

T0515 365 3MT1 2.50, 0.194 130 2.2 1 6.0 1 6.1 
T0516 229 3NO6 1.65, 0.167 89 2.0 1 3.8 2 3.8 
T0517 159 3PNX 1.92, 0.191 127 1.6 1 4.0 1 4.0 
T0518 288 3NMB 2.40, 0.172 79 1.5 1 3.8 1 4.0 
T0520 189 3MR7 2.60, 0.184 144 2.0 3 2.6 3 2.6 
T0521 179 3MSE 2.10, 0.224 85 1.3 1 4.2 1 4.5 
T0522 134 3NRD 2.06, 0.170 87 0.8 1 3.6 1 3.4 
T0523 120 3MQO 1.70, 0.226 131 1.1 2 3.5 2 3.4 
T0524 325 3MWX 1.45, 0.149 82 1.8 1 5.4 1 5.5 
T0525 215 3MQZ 1.30, 0.150 82 2.1 1 5.1 1 5.1 
T0526 290 3NRE 1.59, 0.162 124 2.0 1 4.4 1 4.3 
T0527 142 3MR0 2.35, 0.224 85 1.9 1 3.5 1 3.6 
T0528 388 3N0X 1.50, 0.149 89 2.5 1 5.8 1 5.7 
T0529 569 3MWT 1.98, 0.183 50 1.3 1 2.4 1 2.4 
T0530 115 3NPP 2.15, 0.181 83 1.6 1 3.8 2 3.5 
T0532 506 3MX3 2.00, 0.167 50 1.9 1 3.0 1 3.0 
T0534 384 3N8U 1.44, 0.168 126 2.7 1 3.7 1 3.7 
T0537 381 3N6Z 1.30, 0.167 145 2.6 1 5.7 1 5.7 
T0540 90 3MX7 1.76, 0.178 138 2.3 1 5.2 1 4.9 
T0542 590 3N05 2.35, 0.233 50 1.5 1 2.7 1 2.7 
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T0547 611 3NZP 3.00, 0.183 50 2.8 1 2.0 1 2.0 
T0548 106 3NNQ 2.69, 0.234 86 3.0 1 2.9 1 2.8 
T0550 339 3NQK 2.61, 0.200 107 2.7 1 5.3 1 5.3 
T0558 294 3NO2 1.35, 0.147 129 2.2 1 6.7 1 6.7 
T0561 161 2XSE 1.90, 0.176 129 2.9 1 2.7 1 3.0 
T0563 279 3ON7 2.20, 0.187 88 1.9 1 5.1 1 5.2 
T0565 326 3NPF 1.72, 0.142 87 1.8 1 5.8 1 5.7 
T0566 156 3N72 1.77, 0.191 140 2.1 1 3.2 1 3.7 
T0567 145 3N70 2.80, 0.233 91 1.8 3 1.3 5 1.2 
T0568 158 3N6Y 1.50, 0.182 114 2.5 1 3.8 1 4.1 
T0570 258 3N70 2.80, 0.233 91 1.6 1 4.7 1 4.9 
T0571 344 3N91 2.40, 0.183 108 2.3 1 3.9 1 3.8 
T0573 311 3OOX 1.44, 0.170 92 1.8 1 4.0 1 4.2 
T0574 126 3NRF 1.50, 0.186 113 2.2 1 4.4 1 4.4 
T0575 216 3NRG 2.56, 0.209 93 1.6 3 2.7 1 2.8 
T0576 172 3NA2 2.29, 0.190 110 2.1 1 5.9 1 6.0 
T0578 164 3NAT 2.92, 0.206 107 2.1 1 3.4 1 3.4 
T0580 105 3NBM 1.30, 0.134 141 1.3 1 3.1 1 3.0 
T0581 136 3NPD 1.60, 0.162 93 1.8 1 3.3 1 3.3 
T0582 222 3O14 1.70, 0.154 128 1.9 1 3.9 1 4.0 
T0584 352 3NF2 2.20, 0.233 145 1.7 1 2.9 1 2.8 
T0585 234 3NE8 1.24, 0.161 94 1.6 3 2.7 4 2.6 
T0586 125 3NEU 1.58, 0.195 145 1.0 1 3.3 1 3.3 
T0588 400 3NFV 1.95, 0.158 138 2.8 1 4.5 1 4.5 
T0589 465 3NET 2.70, 0.219 87 1.8 1 3.8 1 3.8 
T0591 406 3NRA 2.15, 0.156 88 1.8 1 3.8 1 3.8 
T0592 144 3NHV 2.50, 0.199 141 1.3 1 3.1 1 2.8 
T0593 208 3NGW 2.31, 0.187 88 2.2 1 3.8 1 3.9 
T0594 140 3NI8 2.50, 0.226 141 1.4 1 3.3 1 3.4 
T0596 213 3NI7 2.78, 0.250 143 1.3 7 1.7 7 1.8 
T0597 429 3NIE 2.30, 0.225 86 1.9 1 2.8 1 2.7 
T0598 161 3NJC 1.69, 0.188 135 2.5 7 1.5 5 1.4 
T0599 399 3OS6 2.40, 0.173 89 1.3 1 3.5 1 3.5 
T0601 449 3QTD 2.70, 0.227 82 1.4 1 3.4 1 3.4 
T0602 123 3NKZ 2.11, 0.158 148 N/A 4 1.6 5 1.5 
T0603 305 3NKD 1.95, 0.220 90 1.6 2 3.8 1 3.9 
T0604 549 3NLC 2.15, 0.218 50 1.5 1 2.5 1 2.5 
T0606 169 3NOH 1.60, 0.161 123 1.7 1 4.4 1 4.7 
T0607 471 3PFE 1.50, 0.139 88 2.5 1 2.9 1 2.9 
T0608 279 3NYY 1.60, 0.150 134 2.1 1 4.6 1 4.7 
T0609 340 3OS7 1.80, 0.145 87 2.1 1 3.8 1 3.8 
T0610 186 3OT2 1.96, 0.217 138 1.8 1 4.6 1 4.7 
T0611 227 3NNR 2.49, 0.232 90 2.1 1 3.2 1 3.2 
T0613 287 3OBI 1.95, 0.236 91 1.1 2 2.2 2 2.2 
T0615 179 3NQW 2.90, 0.213 92 1.9 2 2.3 3 2.2 
T0616 103 3NRT 2.54, 0.201 104 3.2 2 2.8 2 2.6 
T0617 148 3NRV 2.00, 0.198 91 1.7 1 3.2 1 3.2 
T0618 182 3NRH 1.80, 0.198 133 2.9 1 2.9 1 2.8 
T0619 111 3NRW 1.70, 0.187 148 1.1 1 3.4 1 3.6 
T0620 312 3NR8 2.80, 0.216 85 1.2 1 3.9 1 4.1 
T0621 172 3NKG 2.00, 0.172 65 2.9 1 3.5 1 3.4 
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T0622 138 3NKL 1.90, 0.169 151 1.6 2 2.6 2 2.3 
T0623 220 3NKH 2.50, 0.158 88 1.8 1 3.7 1 3.9 
T0624 81 3NRL 1.90, 0.219 96 2.2 2 2.6 1 2.9 
T0625 233 3ORU 1.11, 0.127 123 1.9 1 3.6 1 3.5 
T0626 283 3O1L 2.20, 0.175 91 1.2 1 5.0 1 5.3 
T0627 261 3OQL 2.54, 0.178 142 2.1 10 0.7 10 0.8 
T0628 295 3NUW 2,09, 0.174 142 2.8 1 4.1 1 4.1 
T0629 216 2XGF 2.20, 0.182 95 2.1 1 5.1 1 4.8 
T0632 168 3NWZ 2.57, 0.233 90 1.0 3 2.5 1 3.1 
T0634 140 3N53 2.20, 0.252 91 1.3 4 2.4 4 2.3 
T0635 191 3N1U 1.80, 0.178 85 0.6 2 3.3 2 3.6 
T0636 336 3P1T 2.60, 0.202 87 1.5 1 5.5 1 5.5 
T0638 269 3NXH 2.58, 0.247 90 1.6 1 3.5 1 3.3 
T0639 128 3NYM 1.90, 0.175 81 1.3 1 3.9 1 3.8 
T0640 250 3NYW 2.16, 0.236 90 2.0 1 4.6 1 4.6 
T0641 296 3NYI 1.90, 0.171 89 1.8 1 4.2 1 4.2 
T0643 83 3NZL 1.20, 0.150 134 2.1 1 3.2 1 3.4 
 

3.3. Discrimination between good and bad RMSD models 

            In order to test the sensitivity of the functions with respect to deviations from the 

experimentally determined coordinates of the side chain atoms, 10 native (top ranked) 

targets from CASP9 along with their corresponding models were selected. Subsequent to 

superposition of the models onto the native structure by Dali server (Holm and 

Rosenstrom, 2010), the rms deviation of the side chain atoms were calculated at one-to-

one atomic correspondence w.r.t. the native. Local Deviations (in Cα) greater than 10 Å 

were considered to be so large, as to lose all structural relationship with the 

corresponding region of the native, as also models which were non–superposable (by 

Dali) and these were thus not included in the calculation. CSgl, CScp of the native structure 

and ~ 60 models per target were then plotted (Figure 3) as a function of their RMSD’s 

(ranging from ~ 1.5 to 10 Å). Although the scores generally fell with increase in RMSD 

especially in the range of 1.5 – 5 Å, there was substantial scatter amongst the points 

which belied the expectation of obtaining a functional relationship between the two 

variables. However, as these  RMSD’s contain contributions from both main and side 

chain deviations, a second calculation (with 10 structures: Figure 3) was performed, 

wherein the backbone coordinates were held fixed with errors being incorporated in the 

side chain conformations by three distinct methods: a) randomizing the side-chain χ 
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angles (50 erroneous models) (Basu et al., 2011), b) the same 50 models as in (a) 

subjected to an energy minimization protocol (using CHARMM (Brooks et al., 1983)) 

described previously (Basu et al., 2011) and c) an unique solution determined by 

SCWRL4.0 (Krivov et al., 2009) upon threading. Two distinct clusters were obtained for 

(a) and (b) with energy minimization significantly improving scores in (b) relative to (a). 

The models derived from SCWRL4.0 (c) generally gave values closest to the native 

(Figure 3) while rarely a few structures from (b) gave similar / slightly better scores than 

(c). Thus, the scores indeed reflect errors in side chain coordinates as estimated by 

RMSD (w.r.t. to native) and generally drop with increase in error. 

 

 

 
Figure 3. Complementarity Scores drop with increased errors in side chain 
coordinates. (A) CScp values as a function of side chain RMSD’s for 3 CASP9 targets 
(native and models). N1, N2, N3 correspond to the native crystal structures of T0522 
(3NRD), T0623 (3NKH) and T0586 (3NEU) and their corresponding models plotted in 
red, green and blue. (B) CScp values as a function of side chain RMSD’s for 3 globular 
proteins and their models (see Text). N1, N2, N3 and S1, S2, S3 correspond to the native 
structures and the unique solutions generated by SCWRL4.0 respectively for 2OEB (red), 
3COU (green) and 2HAQ (blue). The two distinct clusters are for structures produced by 
randomization of the side chain conformers (with lower values) and energy minimization 
of the same set of randomized conformers (higher). Similar patterns have been obtained 
for CSgl.  Barring 2HAQ, all other structures are from DB2.  
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3.4. Fold recognition by cross-threading 

             The scoring functions were also tested for protein pairs belonging to the same 

fold though with low sequence identity upon alignment. 100 such pairs (sequence 

identities ranging from 6–30% : Dataset S1 in Supplementary Information in CD 

enclosed) sampling diverse folds were selected from the PREFAB4.0 database (Edgar, 

2004). The sequence identities upon structural alignment for each pair were determined 

by Dali Server (Holm and Rosenstrom, 2010) and their folds assigned according to the 

SCOP database (Murzin et al., 1995). For every pair, the two native sequences were 

aligned using CLUSTAL W (Thompson et al., 1994) and insertions in the sequence to 

be threaded onto the main chain (of its partner) were excised whereas deletions were 

padded with glycine, in order to maintain the correct position of the threaded residues 

consistent with the alignment. For the cross-threaded sequences, padded poly-glycine 

stretches at the N/C termini were also excised prior to the calculations. When the fold 

was part of a larger polypeptide chain (domain), two possibilities were considered. If the 

fold was found to be completely separated from the other domains in the chain, then it 

was considered in isolation for all subsequent calculations, whereas if the fold was found 

to be integrally embedded in the composite structure; the entire chain was used to 

calculate 
sc

mS , 
sc

mE  and the relevant residues in the domain were then used to compute 

CSgl, CScp. For all pairs, the native structures gave characteristic similar scores for both 

CSgl and CScp. The two sequences were then cross-threaded onto the backbone of each 

other, with their side chain torsions being set to values, determined by SCWRL4.0 

(Krivov et al., 2009). For each such pair, 100 random sequences (≤ 15% identity 

between any two sequences in a set) were threaded onto each of the two corresponding 

templates following the same protocol. Hydrogen atoms were geometrically fixed by 

REDUCE (Word et al., 1999) in all models. In large majority of the cases, the average 

score of the two cross-threaded structures was found to be markedly lower than their 

native counterparts yet noticeably higher (Z >= 2 for 86, 87 pairs) than those obtained 

from the random decoys (<Z>: 3.43, 3.33 for CSgl, CScp respectively). However, below 

15 % sequence identity, there was a drop in the Z-scores (less than 1.5 for 5 out of 21 
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such pairs) primarily due to large mismatches in structural (Dali server) and sequence 

(CLUSTL W) alignments. In general, large variations were observed in the Z-scores 

(ranging from 0.4 to 8.0) for different folds. 

4. Conclusion 

            The earlier chapter described that, fairly stringent constraints both in terms of 

shape and electrostatic complementarities are to be satisfied for interior residues of a 

correctly folded polypeptide chain similar to residues at the protein-protein interface. 

This was used to predict the native fold of a sequence. Both functions (CSgl, CScp) based 

on the probability distributions in 
sc

mS  and 
sc

mE  performed successfully in state-of-the-art 

decoy sets. This could be considered analogous to protein-protein docking wherein both 

surface and electrostatic complementarities rise to their optimum values upon the 

interlocking of interacting protein molecules in their correct stereo-specific geometry of 

association. That is to say, folding can be envisaged as the ‘docking’ of interior residues 

to their respective native environments consistent with short and long range forces. The 

fact that the performance of both the functions were comparable to or better than the best 

scoring functions currently available in the literature, demonstrates the practical 

application of complementarity in the area of protein folding and structure prediction. 

The functions were also found to be useful in correctly identifying the same fold for two 

sequences with low sequence identity. Thus, indeed the concept of complementarity 

provides a common conceptual platform to discuss folding and binding.  
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    1. Introduction  

The last chapter described the utility of the combined use of surface and 

electrostatic complementarity measures in fold recognition. This was based on scores 

which were essentially averages over amino acid residues spanning the whole 

polypeptide chain enabling a global assessment of the packing and electrostatics in the 

context of the protein’s three dimensional structure. In this chapter we examine whether 

both surface and electrostatic complementarities can be combined to detect local regions 

of suboptimal packing and electrostatics (arising due to coordinate errors) so that the 

methodology could serve as an effective tool for validation of either modeled or 

experimentally determined protein structures.  

 

In the last decade, there has been an explosion in the number of protein crystal 

structures deposited in the Protein Data Bank (PDB) currently exceeding 75000 (Berman 

et al., 2003). This exceptional growth in the available structural data could require a 

further refinement of existing validation tools to efficiently detect (local / global) 

structural errors and provide a just estimate of the overall reliability of the reported 

atomic coordinates (Read et al., 2001). The retraction of quite a few high profile 

structures (Chang et al., 2006; Hanson and Stevens, 2000; Janssen et al., 2007) 

indicates the possibility for erroneous atomic models seeping through the peer review 

process. Homology modeling, threading techniques and de novo structure prediction 

(Bradley et al., 2005; Rohl et al., 2004) should profit from effective validation protocols 

in assessing the confidence level associated with the final model. Thus, discerning 

validation procedures could find a wide range of applications in computational and 

experimental structural studies. 

 

Currently, all ‘state of the art’ protein structure validation methods includes   

deviations in  covalent bond lengths, bond angles and peptide planarity from ideal values 

which have been estimated from statistical analyses of either small molecules (Engh and 

Huber, 1991; Engh and Huber, 2001) from the CSD or high resolution protein crystal 
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structures from the PDB (Jaskolski et al., 2007). Generally, deviations less than 3σ from 

(unimodal) ideal values are considered to be within the normal range (Lovell et al., 

2003). The Ramachandran Plot (Ramachandran et al., 1963) continues to be one of the 

most simple and effective indicators of error where the amino acid φ, ψ’s in the 

disfavored regions of the plot could point to undue geometric strain (and thus possible 

errors) due to steric overlap between atoms constituting the two contiguous peptide 

planes, including a methyl group attached to the centrally located Cα atom. Subsequently, 

improvements have been made with regard to the delineation of allowed / disallowed 

regions based on the distribution of amino acid residues in protein structures and also in 

the scores used to estimate the quality of the plot (Laskowski et al., 1993; Kleywegt and  

Jones, 1996; Davis et al., 2007). Combinations of side-chain torsion angles (χ) from a 

correctly determined structure are also expected to be in agreement with statistical 

distributions tabulated in rotamer libraries (Dunbrack and Karplus., 1993). In addition, 

other validation measures have been proposed based on the dense packing of side-chain 

atoms within proteins (Pontius et al., 1996), avoidance of non-local steric clashes (Davis 

et al., 2007) and the segregation of hydrophobic / hydrophilic residues (Kleywegt, 2000), 

the former clustering to form cores whereas the latter either tending to interact 

exclusively with each other or projecting into the bulk solvent. Of these, one of the most 

successful is the ‘Clash score’ (Davis et al., 2007) involving the contacts of hydrogen 

atoms, which were generally not included in the refinement of protein crystal structures. 

Other scores attempt to identify packing defects within proteins (Willard et al., 2003), 

satisfaction of hydrogen bonding potential (McDonald and Thornton, 1995; Hooft et 

al., 1996) and distortions in their geometry or the ‘disharmony’ between buried amino 

acid residues and their immediate atomic environments (Vriend and Sander., 1993).  

 

Some of these structural features involved in validation are encapsulated in the 

concept of complementarity which has been used in docking algorithms (Mandell et al., 

2001; Heifetz et al., 2002), prediction of side-chain conformations (Liang and Grishin, 

2002; Krivov et al., 2009) and protein quaternary structures (Caravella, 2002). Elevated 

values for surface (Sm) and electrostatic complementarity (Em) measures found for 
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residues within native protein interiors arise naturally due to the stereo-specific 

interlocking of side-chains (avoiding short contacts and packing defects) (Banerjee et 

al., 2003) and the exquisite balancing of charges (inclusive of hydrogen bonds) (Basu et 

al., 2012) to stabilize the protein fold. Thus, the strain experienced by buried residues, 

consistent with the short and long range forces sustaining the native fold can be estimated 

by the combined use of the two complementarity measures (Sm, Em). This chapter 

demonstrates the construction and application of a novel graphical tool namely the 

‘Complementarity Plot’ (CP) which conveniently identifies residues with suboptimal 

packing and electrostatics and can also be used to judge the overall quality of a protein 

crystal structure in terms of packing and electrostatics.  

 

The chapter further describes the design of a set of scores (tested on several 

databases) which describe the quality of the plot in several ensuing applications. Based 

on these scores, the ability of the plot to detect errors in side-chain rotamers, geometrical 

parameters and disqualify obsoleted, retracted structures has been tested. Possible 

applications of the plot in homology modeling and protein design have been surveyed. 

An attempt has also been made to probe (using the methodology of CP) the relationship 

of deviations in geometrical parameters to fold integrity.  

 

2. Materials and Methods  

2.1. Databases 

The database DB2 described in chapter 2 (containing 400 structures, R-factor ≤ 

20 %, resolution ≤ 2 Ǻ and homologues removed at greater than equal to 30% sequence 

identity, polypeptide chain-length: 75 to 500 residues) was used as a training set in the 

design of the complementarity and accessibility scores (CSl, rGb) which were then 

independently tested on three datasets UDB, MDB, LDB spanning resolution ranges ≤ 1 

Ǻ, 2-2.5 Ǻ, > 3 Ǻ respectively (see Supplementary Information in CD enclosed). For 

structure validation in the case of real data, 110 pairs of obsolete structures and their 

upgraded partners were collected (OUDB : see Supplementary Information in the CD 
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enclosed) from the PDB (ftp://ftp.wwpdb.org/pub/pdb/data/status/obsolete.dat). In order 

to ensure that an upgraded structure was genuinely better over its obsolete counterpart 

only those pairs were selected wherein the improvement in resolution and R-factor were 

better than 0.2 Ǻ and 0.02 respectively. For calculations involving synthetic data a 

composite database consisting of 143 high-resolution structures was assembled (SDB) 

and subsets there from were used for detection of diffused errors (SDB-1), idealization 

(see below) (SDB-2, SDB-3) and protein design (SDB-3, SDB-4) (Table 1).  
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Table 1. The Datasets used in the calculations. Except for the pairs of obsolete and 
upgraded structures in OUDB, no protein with R-factor > 20 % were included in any of 
the databases. For oligomeric proteins, only the largest polypeptide chain was retained for 
calculations. In case of multiple occupancies, atoms with the highest occupancy were 
selected and the first conformer for equal occupancies. For all the databases, homologues 
were removed at sequence identity of 30% or more. Criteria for successful validation in 
Procheck: greater than -1.0 for all G-factor scores and ‘INSIDE’ or ‘BETTER’ recorded 
for bad contacts. Criteria for successful validation in Molprobity: Ramachandran favored: 
> 98%, Ramachandran outliers: < 0.05%, Poor Rotamers: < 1%, Bad backbone bonds: 
0%, Bad backbone angles: < 0.1%, Clash-score ≤ 20.  
 
 

Database Resolution 
range 

Chain length 
(aa) 

Number of 
proteins 

Additional 
Criteria 

Usage 

DB2 ≤ 2 Ǻ 75-500 400 No proteins 
with deeply 
embedded 
prosthetic 
groups, No 

missing atoms 

Training, 
Parameterization 

of  CSl,, rGb 

UDB ≤ 1 Ǻ 38 - 670 113 - Computation of  
CSl,, rGb  

MDB > 2 Ǻ , ≤ 2.5 Ǻ 59 - 185 92 - Same as UDB 
LDB ≥ 3 Ǻ 45 - 500 164 - Same as UDB 

OUDB 1.1-3.4Ǻ 65-900 110 pairs of 
obsolete and 

corresponding 
upgraded 
structures  

Difference in 
resolution, R-
factor between 
obsolete and 

upgraded pair:  
0.2 Ǻ, 0.02 
respectively 

Pair-wise 
Comparison, 
Detection of 

errors in 
Rotamer, 

Regularization 

SDB-1 ≤ 2 Ǻ 56-363 20 divided equally 
among the four 
major protein 

classes 

Idealization 

SDB-2 ≤ 2 Ǻ 56-387 30 satisfying all 
validation 

filters 
implemented 
in Procheck 

Detection of 
low-intensity 

diffused 
synthetic errors 
in main-chain 

parameters 
SDB-3 ≤ 1 Ǻ 38 – 670 68 No missing 

atoms 
Idealization, 
Detection of 

synthetic errors 
in rotamer, 

Design 
SDB-4 ≤ 2 Ǻ 57-363 25 satisfying all 

validation 
filters 

implemented 
in Molprobity 

Design, 
Detection of 
single point 

mutations (Val 
↔ Thr) 
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2.2. The Complementarity Plot 

 

The individual (
sc

mS , 
sc

mE ) values of completely / partially buried residues were 

plotted in a Complementarity Plot (CP) spanning -1.0 to 1.0 in both the X (
sc

mS ) and Y 

(
sc

mE ) axes. Given the fact that for residues in correctly folded proteins both 
sc

mS , 
sc

mE  are 

largely constrained to a limited range of values (as a function of their burial, see chapter 

4), regions in CP encompassing points corresponding to such amino acids could be 

clearly delineated. From the database DB2, 
sc

mS , 
sc

mE  values of all (target) residues 

irrespective of  the amino acid type were plotted separately based on their burial bins 

accounting for 23850, 10624, 13255 residues in  bins 1, 2 and 3 respectively. Thus in all, 

three plots (CP1, CP2, CP3) were obtained. To start with, all the buried residues from the 

database DB2 were plotted in the CPs, which had been divided into square-grids (of 

width 0.05 × 0.05), and the center of every square grid was assigned an initial probability 

(Pgrid) equal to the number of points in the grid divided by the total number of points in 

the plot. The probability of a residue to occupy a specific position in the plot was then 

estimated by bilinear interpolation from the probability values of its four nearest 

neighboring voxels. The plots were then contoured based on their probability values Pgrid 

≥ 0.005 for the first contour level and ≥ 0.002 for the second (Fig.1).  
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Fig.1. CP1: The Complementarity Plot for the 1st burial bin. ‘Probable’, ‘Less 
probable’ and ‘Improbable’ regions of the plot are colored in purple, mauve and sky-blue 
respectively. 
 

The cumulative probability of locating a point within the second (outer) contour 

for the three plots were 91%, 90%, 88% respectively whereas for the first (inner) contour, 

the probability gradually dropped with increasing solvent exposure (82%, 76%, 71%). 

Inspired by the Ramachandran Plot (Ramachandran et al., 1963), the region within the 

first contour was termed ‘Probable’, between the first and second contours ‘Less 

Probable’ and outside the second contour ‘Improbable’ (Fig.2) individually for all three 

plots (CP1, CP2, CP3). In such a plot residues with low 
sc

mS  and 
sc

mE  (< 0.2 for both) are 

easily identified.  
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Fig 2. Construction of the Complementarity Plot. The left panel plots the distribution 

of (
sc

mS , 
sc

mE ) values for all buried or partially buried residues from DB2 according to 
their burial (From top to bottom: CP1, CP2, CP3). The middle panel shows initial grid 
probabilities assigned to each two-dimensional grid of width 0.05 × 0.05. The right panel 
shows the (inner and outer) contour demarcating the ‘probable’, ‘less probable’ and 
‘improbable’ regions.  
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2.3. Complementarity and Accessibility Scores 

 

In order to quantify the quality of the plots, a Complementarity Score was 

designed wherein all points in each plot were first partitioned into two sets, those with 

zero and non-zero probabilities. Occurrence of any point with zero probability 

(essentially in the improbable region) implies that the corresponding residue exhibits 

suboptimal packing and/or electrostatics with respect to the rest of the protein and 

therefore should be penalized. The score thus consists of two terms, the first essentially 

the average of the non-zero log probabilities and the second, the fraction of residues with 

zero-probability multiplied by a penalty (Pen). Thus the score would be expected to 

decrease with increase in the points in the improbable regions of the plot. For a particular 

plot (say CP1) the score can be defined as: 
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     = Slnon-zero + Slzero 

 

where Ntot is the total number of points in the plot which can be partitioned into points 

which fall in square grids of non-zero probability (N) with grid probabilities Pi and those 

located in grids of zero probability (Nzero). For the first term it was assumed that the 

probability assigned to one point (Pi) is independent of the others, leading to a 

multiplication of probabilities (P1, P2, …) and converted into a summation by taking log 

(


N

i

iP
1

10 )(log ). There is some measure of arbitrariness in assigning the value for Pen 

which was computationally optimized. Even for accurately determined structures from 

DB2, generally 10% of the residues (per chain) would be located in the improbable 

regions of the plots. It was thus decided that for correctly folded proteins (of the kind 

found in DB2), the ratio of the two terms (RSl = Slzero / Slnon-zero) should optimally be in 

the range 0.30, greater than which, it would unjustifiably begin to dominate the overall 
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score whereas too low a value (say less than 0.10) would compromise the sensitivity of 

the score to structural errors. Several values of Pen were tested on DB2 where the two 

terms (Slzero & Slnon-zero) were estimated for each polypeptide chain in the database; 

initially applying the same Pen for all the three plots (CP1, CP2, CP3; Table 2). For 

uniform penalties applied to all the three plots it was observed that RSl tended to increase 

from CP1 to CP3 as relaxation in packing constraints (with corresponding increase in 

solvent exposure) increased the relative fraction of points in the zero probability grids 

from CP1 to CP3 (Nzero/Ntot for CP1: 0.026 (± 0.029), CP2: 0.037 (± 0.048), CP3: 0.045 

(± 0.043)). Thus, to introduce some measure of uniformity, Pen was modulated (CP1: 25; 

CP2: 20; CP3: 15) such that RSl was in the range 0.30 – 0.35 for all the three plots. 

Understandably, the ratios of the penalties (Pen) in the three plots (CP1/CP2: 25/20 = 

1.25; CP1/CP3: 25/15 = 1.67) were correlated to the corresponding ratios of Nzero/Ntot 

(CP2/CP1: 0.037/0.026 = 1.42; CP3/CP1: 0.045/0.026 = 1.73).  

Table 2. Sensitivity of CSl to different values of penalty (Pen). The quantum of penalty 

(Pen) applied to CP1, CP2, CP3 is indicated in the first column of the table and RSl = 
Slzero / Slnon-zero. 

Pen  RSl CSl 

CP1 CP2 CP3 CP1 CP2 CP3  

100 100 100 1.31 (±1.44) 1.75 (±2.22) 2.02 (±1.93) -0.54 (± 2.33) 

75 75 75 0.98 (± 1.08) 1.31 (± 1.66) 1.52 (± 1.45) 0.33 (± 1.75) 

50 50 50 0.66 (± 0.72) 0.88 (± 1.11) 1.01 (± 0.96) 1.19 (± 1.17) 

30 30 30 0.39 (± 0.43) 0.53 (± 0.66) 0.61 (± 0.58) 1.89 (± 0.71) 

25 25 25 0.33 (± 0.36) 0.44 (± 0.55) 0.51 (± 0.48) 2.06 (± 0.59) 

20 20 20 0.26 (± 0.29) 0.35 (± 0.44) 0.41 (± 0.39) 2.23 (± 0.48) 

15 15 15 0.20 (± 0.22) 0.26 (± 0.33) 0.31 (± 0.29) 2.40 (± 0.36) 

10 10 10 0.13 (± 0.14) 0.18 (± 0.22) 0.20 (± 0.19) 2.58 (± 0.25) 

5 5 5 0.07 (± 0.07) 0.09 (± 0.11) 0.10 (± 0.10) 2.75 (± 0.14) 

30 25 20 0.39 (± 0.43) 0.44 (± 0.55) 0.41 (± 0.39) 2.06 (± 0.60) 

25 20 15 0.33 (± 0.36) 0.35 (± 0.44) 0.31 (± 0.29) 2.24 (± 0.48) 

20 15 10 0.26 (± 0.29) 0.26 (± 0.33) 0.20 (± 0.19) 2.41 (± 0.37) 
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Finally,  





3

1j

jjl SlwbKCS                                                                                                       (2) 

As has been mentioned, scores for deviant structures are expected to decrease in value. 

So for convenience of interpretation, K was empirically set to 5.0 so as to obtain an 

overall positive score from 0 to 5 in case of a favorable distribution spanning the three 

plots. It follows that such a constant merely acts as a scale factor universally applied to 

all CSl scores. wbj is the number of points in the jth
 plot divided by the total number of 

points in the three plots and the (weighted) summation is over CP1, CP2 and CP3.  

 

The sensitivity of CSl was also tested (Table 2) for different combinations of 

penalties by computing its mean and standard deviations for all chains in DB2. Standard 

deviations were especially high (1.17 to 2.33) for uniform penalties 100, 75, 50 whereas 

for different combinations of penalties in the range of 5 to 30, CSl was found to be fairly 

stable with standard deviations falling in range of 0.14 to 0.60 (Table 2), and  CSl was 

confirmed to be well behaved for the selected penalty values (Pen = 25, 20, 15 for CP1, 

CP2, CP3 respectively). 

 

In order to check the expected distribution of amino acid residues w.r.t. burial, the 

following score was defined.  
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                                                                                                 (3) 

 

where Nres is the total number of residues in the polypeptide chain and Pri is the 

propensity of a particular amino acid (Val, Leu etc) to acquire a particular degree of 

solvent exposure (corresponding to buried residues in the three burial bins and a 4th bin 

composed of exposed residues (Bur > 0.30)).  
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where P(Res(j)|Bur(j)) is the conditional probability of Res(j) (say Val) to acquire a given 

burial, Bur(j). N(Res(j)) is the number of residues of identity Res(j) found in the database 

and NDB is the total number of residues in the database (DB2). Glycines were disregarded 

in all the scores due to the lack of any non-hydrogen side-chain atoms.   

 

To quantify the individual contributions of 
sc
mS  and 

sc
mE , two additional (global) 

scores PSm and PEm were further defined. The normalized frequency distribution 

separately for each burial bin was used to assign discrete probabilities (P (x < 
sc
mS  < 

(x+0.05))) to 
sc
mS divided into intervals of 0.05. Three such probability distributions were 

computed one for each burial bin and a similar procedure was adopted for 
sc
mE . Then, 

for each polypeptide chain, the individual probabilities were averaged over all buried or 

partially buried residues, giving rise to the two following measures: 
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where Nb is the total number of buried or partially buried residues in a given polypeptide 

chain. 
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In addition, a local score (Pcount) was also defined simply as the number of points in the 

improbable regions divided by the total number of points spanning the three plots.  

 

2.4. Building Idealized structures  

 

Idealization refers to the reversal of all main chain bond lengths, angles along 

with torsion angle ω to their corresponding ideal values. A locally developed algorithm 

was utilized to build idealized structures from the native coordinates which was cross 

checked using the ‘Build and Edit protein’ module in the Accelrys (Studio, D., 2.5 

Guide, Accelrys Inc., San Diego. 2009) suite of programs. Both methods gave nearly 

identical results, as an RMSD of 0.035 Ǻ (for 2HAQ) was obtained upon superposing 

(Holm and Rosenstrom, 2010) the two structures which had been built by an identical 

set of (idealized) geometrical parameters. For the in-house program, a single peptide 

plane consisting of atoms Cα
i-1, Ci-1, Oi-1, Ni, Hi and Cα

i was initially constructed based on 

ideal values for bond lengths, bond angles (Engh and Huber, 2001) and ω (Vriend, 

1990). Atomic coordinates of Ci, Ni+1 and Cα
i+1 of the successive peptide plane were then 

determined by the repeated application of the ‘fourth atom fixing’ procedure 

(Ramachandran and Sasisekharan, 1968), in the course of which, the native values of 

φ, ψ were retained. The positions of the remaining atoms (Oi, Hi+1: second plane) were 

then generated by superposing the initially obtained idealized peptide plane onto the 

predetermined atoms Ci, Ni+1 and Cα
i+1. Finally, the side chain atoms (extracted from the 

native coordinates) were threaded onto the idealized main-chain by superposing N, Cα, C 

coordinates of every residue onto their main-chain counterparts. When native values for 

all geometrical parameters were fed into the program a Cα-RMSD of 0.035 Ǻ (side-chain 

RMSD: 0.5 Ǻ, 2HAQ) was obtained between the rebuilt structure and the native 

coordinates upon superposition (Holm and Rosenstrom,  2010), which also confirmed 

the correctness of the idealization protocol. Idealized structures using conformation 

dependent ideal values (for bond angles) from a library (CDL: 

http://dunbrack.fccc.edu/nmhrcm/) were built by suitably adapting the algorithm given 
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above, where the ideal values were now dependent on residue identities and the relative 

orientation of contiguous peptide planes (φ, ψ) (Berkholz et al., 2009). Hydrogen atoms 

were then removed and geometrically rebuilt by REDUCE (Word et al., 1999). The 

idealized structures were then energy minimized by CHARMM (Brooks et al., 1983) 

with either hard (constant harmonic force parameter set to 250.0 for N, Cα, C, O atoms 

and 10.0 for Cβ) or soft (5.0, 2.5: flexible backbone) harmonic restraints on main-chain 

atoms and Cβ.  

 

For the obsolete and upgraded pairs of crystal structures (OUDB) another 

procedure was adopted to ‘regularize’ the coordinates. The ‘REFI’ routine in ‘O’ (Jones 

et al., 1991) was used to regularize the geometry of the coordinates to convergence 

(RMSD shift 0.000 Ǻ) and then used for subsequent calculations.     

       

2.5. Incorporation of low-intensity diffused errors into native coordinates   

A predetermined quantum of small random errors in pre-selected geometrical 

parameters (±0.5σ ; Engh and Huber, 2001) approximately ranging from 1.5 - 2.5° for 

main-chain bond angles and ±1° for (φ, ψ)) was incorporated into native crystal 

structures, by perturbing the specified parameter on randomly chosen residues. The 

protein structure was then rebuilt using computational procedures described above. 

 

2.6. Single residue swapping  

In case of single residue swapping, completely buried (0.00 ≤ Bur ≤ 0.05) valines 

and threonines initially located in the probable region of CP1 were identified (SDB-4) 

and their identities interchanged. Thus, each altered file contained a single transition 

(Val↔Thr) w.r.t. the native. While swapping, the native χ1 torsion of the original residue 

was retained while other side-chain parameters (Val: Cβ-Cγ1 bond length, Cγ1-Cβ-Cγ2 

angle; Thr: Cβ-Oγ1, Oγ1-Cβ-Cγ2: average values obtained from DB2) were altered 

according to the identity of the mutated residue.  
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2.7. Building Homology models 

To test the performance of CP on homology models, 20 structures representing a 

fairly wide cross section of folds were selected as templates from the SCOP database 

(Murzin et al., 1995). For each template structure 5 other sequences with varying 

identities (ranging from 13% to 90%) were chosen by a BLAST (Johnson et al., 2008) 

search (using the DELTA-BLAST algorithm) against the PDB. Sequence similarities and 

identities were calculated using the ‘Align sequence profiles’ module (scoring matrix: 

BLOSUM62) as implemented in the Accelrys (Studio, D., 2.5 Guide, Accelrys Inc., San 

Diego. 2009) suite of programs. The resultant alignment profile along with the template-

backbone coordinates were fed to the ‘Build homology model’ module of Accelrys with 

‘High’ optimization. The top most model with lowest total energy and physical energy 

were then selected. All models were finally energy minimized with flexible backbone and 

subjected to validation by the Complementarity Plot.  

 

3. Results and Discussion:  

As will be evident from the definition of the complementarity functions (see 

Materials and Methods), perfect fit between two surfaces (for example identical 

surfaces) will return a value of 1.00 for 
sc
mS . Likewise 

sc
mE  will be 1.00 for perfect anti-

correlation between two sets of electrostatic potential values on a given surface. 

Generally for completely buried (0.00 ≤ Bur ≤ 0.05) residues in correctly folded proteins, 

both 
sc
mS  and 

sc
mE  lie in the narrow range of ~ 0.50 – 0.55 and ~ 0.50 – 0.70 

respectively, regardless of their identity, thereby satisfying fairly stringent constraints in 

both packing and electrostatics (Basu et al., 2012). For higher solvent exposure (0.05 < 

Bur ≤ 0.30) there is some measure of relaxation in the constraints. The CP consists in 

plotting the surface (
sc
mS : X-axis) and electrostatic (

sc
mE : Y-axis) complementarity 

values of individual residues. The term ‘Complementarity Plot’ (CP) is perhaps a 

misnomer as there are actually three plots, each serving a given range of solvent exposure 

of the plotted residues (CP1, CP2, CP3 for burial bins 1, 2, 3: see Materials and 
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Methods). The constraints both in terms of packing and electrostatics are reflected in the 

dense population of points in a localized region of the CPs (Basu et al., 2012). Thus 

points straying into the improbable regions of the plot denote either defective packing of 

side chain atoms and/or imbalance in the distribution of partial charges within the protein 

interior likely to be symptomatic of fold instability. 

 

To quantify the character of a distribution of points spanning all the three plots, 

proportional to their net probability of occurrence, a complementarity score has been 

designed (CSl). In addition, a second score (accessibility score: rGb) essentially estimates 

the propensity of a particular amino acid residue (Leu, Val etc) to acquire a specified 

degree of solvent accessibility (see Materials and Methods).  

 

For other specific applications and also to benchmark CP relative to other (local) 

measures, a local score (Pcount) was also defined which simply consists in counting the 

number of points in the improbable regions divided by the total number of points in the 

three plots. Generally, validation criteria are distinguished in terms of whether they apply 

to the entire three dimensional structure of proteins (global) such as R-factor, Procheck 

G-factor scores or apply to individual residues (local), for example steric clashes between 

atoms (clash score). As both scores (CSl, rGb) are computed on entire polypeptide chains 

(or a collection of points in the plots) they could be treated as ‘global’. Thus both local 

(Pcount) and global scores (CSl, rGb) have been incorporated into CP, the principal 

difference between them being, the former is a count of individual points imbued with 

some particular attribute whereas the latter is an average of some sort over a collection of 

points. The standalone suite (see Program availability) also lists those residues which 

are in the improbable region of the plots so that the possible errors can actually be 

pinpointed by looking at the original structure. Thus, the CP-scores can be applied to 

each polypeptide chain (in turn) in a database or simply to a distribution of points in the 

plot without any reference to individual proteins. Here, the primary emphasis is on the 

performance of the global CP scores (CSl, rGb) and Pcount has been defined merely to 

compare the CP methodology with other existing local validation scores. However, much 
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should not be made of the distinction between local and global scores as in the final 

analysis the primary interest is whether a structure passed a particular validation test, or 

not, regardless of the specific nature of the score.  

 

3.1. Testing the scores in different resolution ranges 

The global scores (CSl, rGb) were initially optimized on the training database, 

DB2 (see Materials and Methods) to yield values of 2.24 (σ: ±0.48), and 0.055 (±0.022) 

respectively. They were then tested on 3 independent datasets consisting of ultrahigh 

(UDB), medium (MDB) and low resolution structures (LDB). Both the scores from UDB 

and MDB were in good agreement with values observed for the training set (DB2), in 

contrast to LDB which exhibited significant decrease (Fig. 3). The discriminating power 

of CSl, rGb consistent with the visually recognizable features in the distribution of points 

in the CPs was thus fairly well established.  

 

As has been previously mentioned, deviations of less than 3σ in geometrical 

parameters (bond lengths, bond angles etc.) from ideal values are considered to be within 

the normal range. Thus, for all the scores a cut-off of 3σ from the mean was decided as 

the threshold (with the sole exception of rGb) for successful validation. Thus, the 

threshold value for CSl was set to 0.80 (µ-3σ from DB2). Similarly, the average values 

for PSm and PEm for all chains in DB2 were -0.855 ±0.054 and -1.492 ±0.099 respectively 

and their threshold values were set to -1.017 and -1.789 (µ-3σ). Again, considering all the 

polypeptide chains in DB2, an average of 8.75% (4.10), 9.25% (5.05) and 11.14% (6.00) 

of the points (per chain) were found to be in the improbable regions of CP1, CP2, CP3 

respectively. Thus, any polypeptide chain was considered to have successfully passed the 

validation test for the ‘local score’, Pcount when less than 15% (3σ; average σ from the 

three plots: 5.05) of its residues / points were located in the improbable regions taking 

into consideration all three plots. Only in case of rGb was the cutoff reduced to µ-2σ : 

0.011, as the standard deviation was fairly high (σ = 0.4µ) and 3σ actually exceeds the 

mean. It was also confirmed by visual inspection that for structures with rGb 

approximately ~0.000, the three dimensional distribution of residues w.r.t. solvent 
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accessibility was non-native. Throughout this work, the two global scores CSl and rGb 

have been used in conjunction, that is successful validation required the simultaneous 

satisfaction of their individual criteria.  

 

 

 

 
Fig.3. Training and testing of the Complementarity and Accessibility Scores (CSl,, 

CSf,, rGb) in DB2 and datasets of different resolution ranges (UDB, MDB, LDB). The 
average (colored filled bars) and standard deviations (error bars) for the three scores (A) 
CSl, (B) rGb.  

 

Similarly, the average values for PSm and PEm for all chains in DB2 were 0.169 ± 

0.012 and 0.061 ± 0.008 respectively and their threshold values were set to 0.133 and 

0.037 (µ-3σ). Again, 9, 10 and 12% of the points were found in the improbable region of 

the plots, for the three burial bins respectively (from chains in DB2). Any polypeptide 
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chain was considered to have successfully passed the validation test for the ‘local score’, 

Pcount when less than 12.5% of its corresponding points were located in the improbable 

regions of the plots.  

 

3.2. Discriminating obsolete structures from their upgraded counterparts 

In order to test the performance of CP for real data, a database (OUDB) 

consisting of 110 pairs of obsolete and upgraded structures were compiled. For each pair, 

the upgraded structure was better refined relative to its obsolete counterpart indicated by 

improvements in their corresponding resolutions and R-factors (see Materials and 

Methods). Firstly, the complementarity scores were computed for all the chains in the 

database and compared pairwise (Fig. 4). On applying the validation criteria (for CP) 

mentioned above, 69, 97 structures passed the test for the obsolete and upgraded sets 

respectively. Based on the ‘local’ score (Pcount), the corresponding numbers were 44, 72. 

For benchmarking, the packing and hydrogen bonding parameters were calculated by 

Whatcheck (Hooft et al., 1996) for each chain in the two sets and the number of residues 

with ‘abnormal new packing environment’ and ‘unfulfilled buried hydrogen bond donor 

or acceptor’ were summed. In case a residue appeared in both lists it was considered only 

once. Finally, the number of such anomalous residues divided by the chain length was 

used as a criterion for validation (Fig. 4). Since no criteria for rejection is given in the 

Whatcheck manual, a variety of cutoffs were tried. A cutoff of 5% led to 25 and 53 

successful validations in both sets and similar numbers obtained for cut offs of 10 and 

15% were 89, 102 and 106, 110 respectively.  
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Fig.4. Comparison of CP and What-check packing parameters in case of obsolete 
and upgraded structures. (A) CSl and (B) Fraction of anomalous residues (%) are 
plotted in red and blue for the obsolete and upgraded structures respectively.  
 

3.3. Detection of errors in rotamers  

           As would be evident from the description of the CPs, the scores primarily concern 

the subjection of side-chain atoms to short and long range forces in the protein. Thus it 

would be expected that wrong assignments in side-chain rotamers due to low resolution 

data or   some other reason, should evoke a sensitive response from these measures. To 

test this hypothesis those side-chains from the set of obsolete structures were compiled 

(1061 residues in all) which differed by more than 40° from their corresponding residues 

in their upgraded counterpart (involving χ1 and χ2) and yet were within 40° of another 

valid rotamer combination (Berkholz et al., 2009). These two sets of residues (Obsolete, 

Upgraded) were plotted in the CPs and the partitioning of points in the probable, less 

probable and improbable regions (Fig. 5) compared against the standard distribution in 

DB2 (CP1: 82.1%,  9.2%,  8.7%; CP2: 76.1%, 13.9%, 10.0%; CP3: 70.7%, 16.8%, 

12.5%). For completely buried residues (CP1) in the obsolete set, the proportion of 

residues in the three regions (39.7%, 21.7%, 38.6%) significantly differed from that 

found in DB2, in contrast to the upgraded set which was found to be in fairly good 
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agreement (73.7%, 15.6%, 10.8%). Significant differences in the two distributions were 

also found for CP2 (obsolete: 42.8%, 20.5%, 36.7%; upgraded: 64.9%, 21.2%, 13.9%) 

and CP3 (obsolete: 47.7%, 29.3%, 22.9%, upgraded: 60.9%, 25.7%, 13.4%). Deviations 

from the expected distributions (DB2) were estimated by means of χ2 (df=3-1, probable, 

less probable, improbable; χ2
0.05 = 5.991) for each of the two sets separately for all the 

three CPs. For obsolete and upgraded structures, χ2 were found to be 509.8, 21.55 (CP1), 

191.8, 14.53 (CP2) and 67.82, 15.93 (CP3) respectively. As the points have been plotted 

without any reference to the rest of the polypeptide chains the χ2 could be considered an 

adaptation of the ‘local’ score. The relative decrease in χ2 for obsolete structures from 

CP1 to CP3 is obviously due to the relaxation in packing with increase in solvent 

exposure. The two sets could also be clearly discriminated by the global CP-scores 

applied to the entire distribution: CSl : -1.73, rGb : 0.027 (obsolete); CSl : 1.97, rGb : 

0.031 (upgraded).  
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Fig. 5. Distribution of residues from obsolete structures that have a different (yet 
valid) side-chain rotamer than their upgraded counterparts. (A). CP1 for obsolete, 
(B). CP1 for upgraded, (C). CP2 for obsolete and (D). CP2 for upgraded structures.  
 

In another test, a subset consisting of 222 deeply buried residues (0.0 ≤ Bur ≤ 

0.05) from upgraded structures were identified which were originally found to be located 

in the probable region of CP1. They were then replaced by their corresponding 

counterparts from the obsolete structures. Subsequent to the replacement, 45% of the 

points were relocated in the improbable region of the plot, 16% were found in the less 

probable region whereas 39% were retained in the probable region (Fig. 6). The overall 

χ2 for the distribution of points was 397.63. Thus, CP could have applications when 



155 
 

dealing with low-resolution data where automated side-chain rebuilding methods 

generally do not work very efficiently. 

 

Fig.6. Distributions (in CP1) for residues with native side-chain conformers from 
the upgraded structures and replaced by rotamers from corresponding obsolete 
counterparts. (A) Distribution of residues with native side-chains all falling into the 
probable regions of CP1 and (B) distribution subsequent to the replacement. 
 

Another calculation involving synthetic data, assigned a random rotamer 

combination (Berkholz et al., 2009) to a single specific buried residue (in PDB files from 

the database SDB-3) such that the native χ1 was altered by more than 40°. Similar to the 

above situation, successful detection of error would be the transition of residues from the 

probable to the improbable regions of the CPs. Out of 1388 residues which were 

originally located in the probable region, 75.1% were relocated in the improbable region 

subsequent to the introduction of error followed by 10.3% in the less probable region 
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with the remaining 14.6% retained in the probable region as false positives (Fig. 7). The 

CP-scores were CSl : 3.15, rGb : 0.096 before and CSl : -54.30, rGb : 0.1017 after the 

introduction of error whereas the χ2 was found to be 6564.55 for the latter case.  

 

  

Fig.7. Distributions (in CP1) for residues with native side-chain conformers and 
replaced by random rotamers. (A) Distribution of residues with native side-chains all 
falling into the probable regions of CP1 and (B) distribution subsequent to the 
replacement. 
 

3.4. Disqualifying retracted structures   

A set of 28 retracted or suspected (obsolete without being superseded) crystal 

structures  were subjected to a selection of validation protocols (Procheck, Clash-score 

from Molprobity and Whatcheck packing parameters) including CP. Structures which 

were either suspect in (complexed) ligand or contained embedded cofactors were not 

included in the calculation and for oligomeric proteins the largest polypeptide chain was 

retained. Procheck was used as an initial general filter and the remaining structures were 

specifically tested for packing defects by the other validation measures. A structure was 

considered to have passed the filters implemented in Procheck when all G-factor scores 
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were greater than -1.0 and ‘INSIDE’ recorded for bad contacts. The criteria for successful 

validation in the case of CP both with respect to the local (Pcount) and global (CSl, rGb) 

measures have already been mentioned and structures were considered to have passed the 

validation filter for Whatcheck when there was ‘No series of residues with abnormal new 

packing environment’ and ‘No stretches of four or more residues each having a packing 

Z-score worse than -1.75’ (Whatcheck output for packing parameter). A Clash-score 

(Molprobity) less than 20.0 was considered to be within the normal range. A total of 5 

structures (1G40, 1G44, 2A01, 2ADH, 3KJ5) failed in all tests, whereas 15, 14, 4, 6, 5 

were found to satisfy the validation criteria in Procheck, Whatcheck, Clash-score, Pcount 

and (CSl, rGb) respectively (Table 3). Of the 15 structures (passing Procheck), 6, 11, 10, 

11 failed in Whatcheck, Clash-score, Pcount and (CSl, rGb) respectively. Surface 

complementarity alone was also considered (Psm) separately in order to specifically test 

for packing defects (by CP) in these structures. A total of 11 structures managed to 

exceed the threshold in Psm. Again, 6 structures passed procheck and failed in Psm. More 

importantly, there were 9 structures (1BEF, 1DF9, 2QID, 1RID, 1Y8E, 1S7B, 2F2M, 

2CK9, 2MT2) which passed Whatcheck packing parameters, however failed to meet the 

threshold in Psm indicative of packing defects which was also reflected in their high clash-

scores. Thus, the performance of CP to detect anomalous packing in these retracted 

structures seem to be somewhat better than Whatcheck packing parameters and 

comparable to the Clash-score of Molprobity. 
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Table 3. Comparison of the different validation measures for retracted / suspected 
structures.  

 

PDB ID Resolution, 
R-facor 

Procheck Whatcheck-
packing 

Clash-
score 

Pcount (CSl, rGb) Psm 

1BEF 2.10, 0.186  + + - - - - 
1CMW 2.60, 0.192  + - - - - + 
1DF9 2.10, 0.199  - + - - - - 
2QID 2.10, 0.199  - + - - - - 
1G40 2.20, 0.198 - - - - - - 
1G44 2.60, 0.234  - - - - - - 
1L6L 2.30, 0.198  + + - - - + 
1RID 2.10, 0.206  - + - - - - 
1Y8E 2.20, 0.195  - + - - - - 
2A01 2.40, 0.228  - - - - - - 
2HR0 2.26, 0.180  + - - - - + 
1PF4 3.80, 0.240  + - - - - - 
1S7B 3.80, 0.320  + + - - - - 
1Z2R 4.20, 0.280  + - - - - - 
2F2M 3.70, 0.282  + + - - - - 
2A73 3.30, 0.233  + + - - - + 
2ADH 2.4, NULL - - - - - - 
2CK9 2.85, 0.187 + + - - - - 
2MT2 2.30, NULL - + - - - - 
2PZ3 2.42, 0.314 - - - - + + 
2QNS 3.00, 0.238 - - - - - + 
2RA7 1.99, 0.242 + + + + + + 
3A00 1.80, 0.222 + + + + + + 
3K78 2.80, 0.274 + + - + - + 
3KJ5 3.00, 0.366 - - - - - - 
3O7Y 2.41, 0.180 + - + + + + 
3O7Z 2.55, 0.183 + - + + + + 
3O8K 2.70, 0.268 - - - + - - 

 

Success or failure to meet the validation criteria (see Text) for all the measures is 
indicated by ‘+’ and ‘-’ respectively. Information regarding these retracted or suspected 
structures were obtained from http://main.uab.edu/Sites/reporter/articles/71570/, Read et 
al., 2011 and ftp://ftp.wwpdb.org/pub/pdb/data/status/obsolete.dat.  
 
3.5. Detection of low-intensity diffused errors  

Since CPs are probabilistic in nature and are most effective when the entire 

polypeptide chain is taken into account, they should be able to detect an overall decline in 

the accuracy of the coordinates due to low-quantum random errors in geometrical 

parameters diffused over the entire structure. To probe the performance of CPs in such 
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circumstances, random errors were incorporated throughout the fold in preselected 

geometrical parameters: (i) approximately 1.5 - 2.5° for main-chain bond angles (±0.5σ 

(Engh and Huber, 2001)) and (ii) ±1° for (φ, ψ). 30 high-resolution structures from 

SDB-2 were used for these calculations and 20 erroneous models generated per native 

structure for each of the geometrical parameters leading to 600 models per set. From this 

set, 142, 152 files (main-chain bond angles, (φ, ψ)) passed the validation filters (criteria 

stated in the previous section) in Procheck. The average all-atom RMS deviations of 

these models with respect to their corresponding native structures were 1.89Å ±0.71 and 

1.67 Å ±0.56 respectively. Of these 108, 109 files failed to meet the criteria for 

successful validation in CP with 78, 77 registering negative values for at least one of the 

two (CSl, rGb) scores.  

 

3.6. Probing the role of deviations in maintaining structural integrity 

One of the questions addressed in this work is the contribution of deviations (in 

geometrical parameters) in maintaining structural integrity of the native fold. For this 

purpose, 20 high resolution structures (SDB-1), spanning the four major protein classes 

and ranging from 56 to 363 residues in chain length were selected and the structures 

rebuilt (see Materials and Methods) by reverting all main-chain bond lengths, angles 

and ω-torsions to their corresponding unimodal ideal values (as tabulated in Procheck 

(Laskowski et al., 1993), ω: Whatif (Vriend, 1990)), while retaining native values for all 

other dihedral angles (φ, ψ, χ). This led to such large-scale distortions in the idealized 

structures (with respect to the original native model) that often their (Cα) RMSDs 

exceeded 10 Å (Fig. 8). 
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Fig. 8. Distortions in the native fold due to the reversal of all main-chain bond 

lengths, angles and ω-torsions to their corresponding (unimodal) ideal values. (A) 
the native structure of cyclophilin from L. donovani (2HAQ) and (B) its corresponding 
idealized structure (Cα-RMSD: 12.86 Ǻ, calculated at one-to-one atomic 
correspondence). Figure constructed by PyMol [http://www.pymol.org/].  
 

Although the degree of structural distortions is estimated by the RMSDs, its effect 

on packing and electrostatics can be conveniently assessed using the CP measures. The 

distortions were more pronounced for larger polypeptide chains (~100 residues or more 

in length) due to the accumulation of a higher number of angular idealizations. Also, 

proteins containing greater β-sheet content had more severe deformations most probably 

rationalized (Hooft et al., 1996) by the distribution in N-Cα-C (τ) angle with respect to 

secondary structure. The procedure also led to a sharp decline in CSl (-10.54, σ = ±3.48) 
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averaged over all 20 structures, relative to their corresponding native values (2.47 ±0.41 

respectively: Table 4).  

 

Table 4. Complementarity and Accessibility scores for idealized structures.  Average 
scores (CSl,, rGb) and standard deviations (in parentheses) obtained for different forms of 
idealization on the database SDB-1. The same scores have also been tabulated for the 
native proteins in the original databases DB2 and SDB-1.  Ideal values for pre-selected 
geometrical parameters were obtained from Engh and Huber, 2001; Whatif (Vriend, 
1990) or  a Conformation Dependent Library (CDL) (Berkholz et al., 2009)  
 

Idealization protocol  CSl rGb 

DB2 (≤ 2 Å, 400) 2.24 
(0.48) 

0.055 
(0.022) 

SDB-1 (≤ 2 Å, 20) 2.47 
(0.41) 

0.060 
(0.020) 

Main-chain bond-lengths a , angles a and ω b idealized  -10.54 
(3.48) 

0.000 
(0.031) 

Main-chain bond-lengths a , angles a and ω b idealized and 
energy-minimized with flexible backbone 

-2.58 
(2.61) 

0.004 
(0.030) 

Main-chain bond-lengths a, angles a idealized (with native 
ω)  

-10.52 
(3.80) 

0.009 
(0.03) 

Main-chain bond-angles c idealized (with native ω) -8.98 
(3.87) 

0.017 
(0.028) 

Main-chain bond-angles c idealized (with native ω), 
energy-minimized with rigid backbone 

-1.42 
(2.59) 

0.019 
(0.025) 

Main-chain bond-lengths a idealized 2.45 
(0.36) 

0.060 
(0.020) 

Main-chain bond-angles a idealized  -10.56 
(3.75) 

0.010 
(0.030) 

ω idealized b  -7.80 
(3.80) 

0.022 
(0.030) 

Main-chain bond-angle: N-Cα-C (τ) a idealized  -7.80 
(3.95) 

0.031 
(0.027) 

Main-chain bond-angle: Cα
i-Ci-Ni+1 

a idealized  -4.98 
(4.73) 

0.047 
(0.026) 

Main-chain bond-angle: Ci-1-Ni-C
α

i 
a idealized  -3.95 

(3.36) 
0.037 

(0.030) 
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Little or no improvement was observed in the quality of the rebuilt structures by 

either retaining native ω values or utilizing ideal values (for bond angles) derived from a 

conformation dependent library (CDL) (Berkholz et al., 2009) (Fig. 9).  

 

 

 

Fig.9. Effect of CDL-idealization probed by CP. Distribution for (A) the native 
polypeptide chain (1PGS) and (B) its corresponding idealized structure generated 
utilizing CDL ideal values.  
 

The values for rGb (0.000 ±0.031) for the idealized structures were also 

substantially reduced as structural distortions often led to the exposure of hydrophobic 

residues to the solvent. Energy minimization subsequent to idealization improved the 

complementarity scores (CSl : -2.58 ±2.61) even though they were still significantly less 

than their corresponding native values, with a surge in their standard deviations (Fig. 10).  
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Fig.10. CSl scores for structures before and after idealization. 20 structures (from 
SDB-1) with increasing chain-length along the X-axis. Black : native; red : idealized; and 
blue : idealized + energy-minimized.   
 

The substantially low values for rGb remained unaltered even after energy 

minimization, indicative of hydrophobic residues still remaining exposed to the solvent. 

Minimization also did not improve the (Cα) RMSDs (calculated at a one-to-one atomic 

correspondence subsequent to superposition by Dali server (Holm and Rosenstrom, 

2010) between native and idealized coordinates, which in some instances could not even 

be superposed onto each other (Table 5).  
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Table 5. Structural distortions due to idealization as reflected in the RMSDs.  
RMSDs calculated between Cα atoms of idealized (all main-chain bond lengths, bond 
angles and ω) and the native coordinates (calculated at a one-to-one atomic 
correspondence) subsequent to superposition by Dali server. The same calculation was 
repeated for energy minimized coordinates subsequent to idealization. ‘-’ stands for non-
superposable structures.   

 

PDB ID 
 

RMSD (Ǻ) a 

Idealized  
vs. native  

 

Idealized  
& Energy Minimized  

vs. native b 

1AKO 13.98 -c 

1BGF 7.30 6.77 

1CEM 16.61 17.35 

1CHD 22.42 22.18 

1CKA 3.05 3.10 

1ERZ 24.44 22.78 
1HBQ 22.60 - 

1IFC 11.30 11.48 

1LMB 4.56 4.56 
1MKB - - 

1MLA 23.33 22.05 

1PDO 4.56 5.29 

1PGS - - 

1SFP - - 

1SRV 13.82 - 

1STN 18.02 18.10 

1UBI 4.31 4.14 

2CPL 12.52 12.58 

2END 7.64 7.41 

2LIS 9.09 9.11 
 

Thus, in summary, in no case could the original structure be reconstituted by any 

form of energy minimization of the idealized coordinates. Calculations using both 

unimodal and CDL ideal values were repeated on a larger dataset of 68 ultrahigh 

resolution (≤ 1 Ǻ) structures (SDB-3), which gave similar pattern of results (Table 6).  
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Table 6. Complementarity and accessibility scores for idealized structures of ultra-
high resolution. Average scores (CSl, rGb) standard deviations (in parentheses) for the 
idealized structures. Structures idealized by different methods from a database of 68 
ultra-high resolution structures (SDB-3). Unimodal and CDL ideal values obtained from 
Engh and Huber, 2001 and a Conformation Dependent Library (CDL) (Berkholz et al., 
2009). 
 

Parameters used for 
Idealization   

CSl rGb 

Unimodal ideal values  -9.82 
(3.75) 

-0.009 
(0.032) 

CDL ideal values  -6.64 
(4.12) 

0.024 
(0.003) 

 

To determine the relative contribution of each geometrical parameter in the 

distortions of the reconstituted (idealized) polypeptide chains, calculations (from SDB-1) 

were repeated by individually idealizing bond lengths, angles and ω in turn, while 

retaining native values for all other parameters. Idealizing bond lengths were found to 

cause no significant distortions while all the angular parameters played an influential 

causal role in giving rise to structural deformations. Idealizing either τ or ω was found to 

have a more pronounced effect on the distortions amongst all other angular parameters 

(Table 4).  

 

Another method adopted for idealization involved regularizing the whole protein 

structure using the ‘REFI’ routine in the software ‘O’ (see Materials and Methods). 110 

pairs of obsolete and upgraded structures (OUDB) were used for this calculation and 

their side-chain RMS deviations computed along with the Complementarity scores before 

and after the regularization. For both the sets (Obsolete, Upgraded), the procedure did not 

lead to any substantial structural alterations w.r.t the original coordinates borne out by 

both side-chain RMS deviations (Obsolete: 0.252 Å ± 0.153, Upgraded: 0.205 Å ± 0.147) 

and the scores (CSl) before (Obsolete: 0.229 ± 2.49, Upgraded: 1.95 ± 0.67) and after 

(Obsolete: -0.09 ± 2.77, Upgraded: 1.65 ± 0.84) the regularization.  
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3.7. Detection of unbalanced charges in the protein interior  

CP takes into account long range electrostatics of the whole protein molecule as 

part of its validation protocol. In order to examine the additional efficacy of this feature 

in error detection (involving misidentification of side-chains) native sequences of 93 

structures (SDB-3 & SDB-4) were redesigned by switching polar or charged to 

hydrophobic residues and vice versa. All deeply or partially buried residues from a 

chosen set of amino acid identities (Bur ≤ 0.30) were changed to those of an altered  

hydrophobic character, though similar in size and shape in most of the cases: Ala → Ser, 

Ser ↔ Cys, Thr ↔ Val, Phe ↔ Tyr, Leu → Asn (transition probability : 0.5), Leu → Asp 

(0.5), Ile → Met, Met → Ile (0.5), Met → Arg (0.5), Glu → Arg (0.5), Glu → Gln (0.5), 

Asp ↔ Asn, Arg → Met (0.5), Arg → Glu (0.5). Side-chains of these designed sequences 

were then threaded onto the native backbone using SCWRL4.0 and the resulting 

structures were energy minimized with flexible backbones, subsequent to hydrogen 

fixation by REDUCE (Word et al., 1999). Molprobity was used to ensure that the 

redesigned models were devoid of errors / outliers in the other validation parameters. All 

93 redesigned structures passed all the validation filters in Molprobity with minimum 

Clash scores (1.26 ±0.64; <percentile>: 98.23 ±1.55) and satisfying all other validation 

filters, reflected in the overall Molprobity scores (1.00 ±0.27; <percentile>: 99.38 ±1.21). 

Although, CSl dropped to 0.36 ±1.23; w.r.t. native (CSl: 2.21 ±0.62), the polar to 

hydrophobic transitions (or vice versa) were naturally captured in the poor rGb scores 

(0.005 ±0.026) reflecting non-native like distribution of amino acids (native: 0.054 

±0.026) with regard to burial and also in the distribution of suboptimal points primarily 

with regard to sc
mE  (Fig. 11).  
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Fig.11. Ability of CP to detect residues with unbalanced charges in the protein 
interior. (A) Native distribution of 3KLR in CP1 and (B) subsequent to the ‘polar to 
hydrophobic’ transitions. All buried residues have been included in the plot. As can seen 
from the plot, the mutated residues have a tendency to be found in the improbable region 

(suboptimal for  
sc
mE ).   

 

74 redesigned models failed to meet the criteria for successful validation (in CP) 

whereas 58 registered negative values in at least one of the two (CSl,  rGb) scores (Fig. 

12). On the other hand, consideration of the ‘local’ score (Pcount) led to the rejection of 77 

structures. By considering electrostatic complementarity alone, (PEm) 66 structures failed 

to meet the threshold criteria. 198 unfulfilled hydrogen bonds (for buried residues) were 

detected by Whatcheck in the native structures which increased to 1160 for the 

redesigned models demonstrating a comparable ability of Whatcheck and CP to detect 

such errors. 82 redesigned models had more than 2 (average obtained from native) 
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unfulfilled hydrogen bonds over and above the native. Thus, the local electrostatic 

parameters of CP and Whatcheck appear to perform comparably. 

      

 

 
Fig.12. CSl scores for native and corresponding redesigned structures. The native CSl 

scores for 93 structures (from SDB-3 and SDB-4) plotted in red along with those 
subsequent to the ‘hydrophobic to hydrophilic’ transitions plotted in blue.  
 

An attempt was also made to detect single point mutations Val → Thr and Thr → 

Val (which could be interpreted as a sequencing error or accidental mutant) conserving 

all other parameters, in 25 high resolution structures (SDB-4). Molprobity was used to 

ensure that the redesigned models were validated in the other parameters before and after 

the in-silico mutation (see Materials and Methods). Initially, all these deeply buried 

residues (Val: 227, Thr: 136 from burial bin 1) were in the probable regions of the plot 

which relocated to the improbable regions in 31.3% and 23.5% (less probable: 19.6% & 

26.5%) of the cases respectively, upon mutation. 26.4% of the altered threonines (Val → 

Thr) were also detected to have unfulfilled hydrogen bonds in their side-chains by 

Whatcheck. 
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3.8. Quality assessment of homology models  

Finally, the method was tested on homology models (20 folds) with templates of 

varying sequence identity (w.r.t. the modeled sequence; ranging from 13.5% to 90.3%). 

Both CSl,, rGb correlated fairly well with sequence identities and somewhat better with 

sequence similarities of the modeled sequences (see Table S1 in Supplementary 

Information in CD enclosed). The (non-linear) correlation of CSl with both sequence 

identity and similarity were best fitted to cubic-polynomial curves with R2 of 0.69 and 

0.72 respectively (Fig. 13). 

 

 

 

Fig.13. CSl scores for homology models as a function of sequence identity and 
similarity. Both distributions are best fitted to cubic polynomial curves with R2 of (A) 
0.69 for identity and (B) 0.72 similarity respectively.  



170 
 

 

Interestingly, there was a significant improvement in the scores upon energy 

minimization of the models obtained from Accelerys (Modeller). On an average, there 

was an increase of ~150 to 175% in the CSl scores, for the models before and after energy 

minimization. Generally, a fairly steep decline in CSl was noted below 30% sequence 

identity, even though 8 out of 47 such models were found above the CSl cutoff (0.80) for 

successful validation. Thus, the scores could definitely be used as measures, either to 

judge the overall quality of the models or the appropriate choice of the template. CP was 

then compared with the Modeller-DOPE score which also provides a measure of 

complementarity in the interior of protein structural models. 22 homologous structures of 

2HAQ (Cyclophilin-like-fold) were assembled ranging in sequence identity from 17 to 

74%. Homology models were built using these sequences with 2HAQ as a template in 

Accelerys (Modeller), which provided their DOPE scores. Both the scores gave a 

significant correlation with sequence identities w.r.t. the template (CSl: 0.79; DOPE: -

0.66, Fig. 14), their mutual correlation being -0.51. However, unlike CSl which is 

normalized over the entire polypeptide chain, the DOPE score gave almost zero 

correlation (-0.12, calculated on 50 models) when estimated over a collection of folds. 

The methodology was also compared with QMEAN (Benkert et al., 2009) which is 

reportedly sensitive for estimating the proximity of models to a native target. QMEAN 

global scores were estimated for the native folds and their corresponding homology 

models for each set and compared with CSl. There was appreciable agreement between 

the two sets of scores exhibited by high correlation coefficient (0.866 calculated over 120 

models) between them. 
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Fig.14. CSl and DOPE score (Modeller) for homology models (built on the template 
2HAQ) as a function of sequence identity. The Pearson’s correlation with sequence 
identity for (A) CSl and (B) DOPE-score are 0.79 and -0.66 respectively.  
 

4. Conclusions:   

The Complementarity Plot as a validation technique is probabilistic in nature and 

can be utilized either over the full chain, or on any distribution of points. In addition, the 

quality of packing and electrostatics of a local region in a protein can also be assessed. 

This user defined choice of either ‘global’ or ‘local’ measures gives considerable 

flexibility in the use of the plot. With regard to the final validation results, good 

agreement was established between the local (Pcount) and global (CSl, rGb) scores in the 
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CP methodology. Further, this is the only validation procedure which combines both 

packing and electrostatics in a single unified measure and displays graphically (apart 

from actually listing) residues with faulty packing or electrostatics. Since the plot 

essentially has to do with the packing and electrostatics of side-chain atoms, it performs 

fairly well in the detection of errors involving side-chain torsion angles. Further, it finds 

its application in the detection of packing anomalies in retracted structures. It is also 

especially sensitive to low-intensity errors in main-chain geometrical parameters diffused 

over the entire polypeptide chain, which could arise either due to low resolution, sub-

standard data, model-bias or a host of other factors. The current work clearly indicates 

that over and above the commonly used validation techniques, the quality of packing 

within proteins and the global electrostatics should be included separately in any 

validation package. Calculations involving residue swapping from hydrophilic to 

hydrophobic or vice versa indicates that the methods developed could be particularly 

effective in protein (full sequence / core) design, wherein multiple mutations could 

accompany the design process. The CP could also be a sensitive indicator of the correct 

choice of template in homology modeling.  

 

5. Program availability: 

The standalone suite of programs (Sarama) for the Complementarity Plot (Linux 

Platform) with detailed features and documentation is available at: 

http://www.saha.ac.in/biop/www/sarama.html 

 

References  

Banerjee R, Sen M, Bhattacharyya D, Saha P. (2003). The Jigsaw Puzzle Model: 
Search for Conformational Specificity in Protein Interiors. J. Mol. Biol. 333: 211–
226. 
 
Basu S, Bhattacharyya D, Banerjee R. (2012). Self-Complementarity within Proteins: 
Bridging the Gap between Binding and Folding. Biophys. J. 102: 2605-2614. 
 



173 
 

Berman HM, Henrick K, Nakamura H, (2003). The worldwide Protein Data Bank 
(wwPDB): ensuring a single, uniform archive of PDB data. Nature Struct. Biol 10: 98. 
 
Berkholz DS, Shapovalov MV, Dunbrack RL, Karplus PA. (2009). Conformation 
Dependence of Backbone Geometry in Proteins. Structure 17: 1316-1325.  
 
Benkert P, Kunzli M, Schwede1 T (2009). QMEAN server for protein model quality 
estimation. Nucl. Acids. Res. 37: W510–W514.  
 
Bradley P, Misura KMS, Baker D (2005). Toward high-resolution de novo structure 
prediction for small proteins. Science 309: 1868-1871.  
 
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. (1983). 
CHARMm: A program for macromolecular energy, minimization, and dynamics 
calculations. J. Comput. Chem. 4: 187-217.  
 
Caravella JA. (2002). Electrostatics and packing in biomolecules: accounting for 
conformational change in protein folding and binding. PhD thesis. Massachusetts 
Institute of Technology, Cambridge.  
 
Chang G, Roth CB, Reyes CL, Pornillos O, Chen Y-J, and Chen AP (2006). Structure of 
MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette 
(ABC) transporters. Retraction. Science 314: 1875.  
 
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, 
Arendall WB, III, Snoeyink J, Richardson JS, Richardson DC, (2007). MolProbity: all-
atom contacts and structure validation for proteins and nucleic acids. Nucl. Acids. 

Res. 35: W375–W383.  
 
Dunbrack RL, Jr., and Karplus M. (1993). A backbone dependent rotamer library for 
proteins: application to sidechain prediction. J. Mol. Biol. 230: 543-571. 
 
Engh RA, and Huber R (1991). Accurate bond and angle parameters for X-ray 
protein structure refinement. Acta Crystallogr A 47: 392-400.  
 
Engh RA, and Huber R (2001). International Tables for Crystallography. In 
International Tables for Crystallography, M.G. Rossmann and E. Arnold, eds. 
(Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 382-392.  
 
Hanson MA, and Stevens RC (2000) Cocrystal structure of synaptobrevin-II bound to 
botulinum neurotoxin type B at 2.0 A resolution. Retraction. Nat. Struct. Biol. 7: 687-
692.  
 



174 
 

Heifetz A, Katchalski-katzir E, and Eisenstein M. (2002). Electrostatics in protein–
protein docking. Protein Sci, 11: 571–587. 
 
Holm L, and Rosenstrom P. (2010). Dali server: conservation mapping in 3D. Nucl. 

Acids. Res. 38: W545–549.  
 
Hooft RWW, Sander C, and Vriend G, (1996). Positioning hydrogen atoms by 
optimizing hydrogen-bond networks in protein structures. Proteins 26: 363-376. 
 
Hooft RWW, Vriend G, Sander C, and Abola EE, (1996) Errors in protein structures. 
Nature 381: 272  
 
Janssen BJC, Read RJ, Brunger AT, Gros P (2007). Crystallographic evidence for 
deviating C3b structure? Nature 448: E1-E2, discussion E2-E3. 
 
Jaskolski M, Gilski M, Dauter Z, Wlodawer A, (2007). Stereochemical restraints 
revisited: how accurate are refinement targets and how much should protein 
structures be allowed to deviate from them? Acta Cryst D 63: 611-620.  
 
Jones TA, Zou JY, Cowan SW, Kjeldgaard M. (1991). Improved methods for building 
protein models in electron density maps and the location of errors in these models. 
Acta Cryst A47: 110-119.  
 
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008). 
NCBI BLAST: a better web interface. Nucl. Acids. Res. 36: W5-W9. 

 
Kleywegt GJ, Jones TA, (1996). Phi/Psi-chology: Ramachandran revisited. Structure 
4: 1395-1400.  
 
Kleywegt GJ. (2000). Validation of biomacromolecular structures – lessons learned 
from X-ray crystallography. Acta Crystallogr D 56: 249-265.  
 
Krivov GG, Shapovalov MV, Dunbrack RL. Jr. (2009). Improved prediction of protein 
side-chain conformations with SCWRL4. Proteins. 77: 778-795.  
 
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. (1993). PROCHECK: a 
program to check the stereochemical quality of protein structures. J. Appl. 

Crystallogr. 26: 283-291.  
 
Lawrence MC, and Colman PM. (1993). Shape complementarity at protein/protein 
interfaces. J Mol Biol. 234: 946–950. 
 
Lee B, and Richards FM. (1971). The interpretation of protein structures: Estimation 
of static accessibility. J. Mol. Biol. 55: 379-400. 



175 
 

 
Liang S, Grishin NV. (2002). Side-chain modeling with an optimized scoring 
function. Protein Sci.11: 322-331. 
 
Lovell SC, Davis IW, Arendall WB III., de Bakker PIW, Word, JM, et al. (2003). 
Structure Validation by Cα Geometry: φ,ψ and Cβ Deviation. Proteins: Struct. 

Funct. Genet. 50: 437-450.  
 
Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, Tsigelny I, and 
Ten Eyck LF. (2001). Protein docking using continuum electrostatics and geometric 
fit. Protein Eng. 14: 105–113. 
 
McCoy AJ, Epa VC, and Colman PM. (1997). Electrostatic complementarity at 
protein/protein interfaces. J Mol Biol. 268: 570-584. 
 
McDonald IK, and Thornton JM (1995). The application of hydrogen bonding analysis 
in X-ray crystallography to help orientate asparagine, glutamine and histidine side 
chains. Protein Eng 8: 217-224.  
 
Murzin AG, Brenner SE, Hubbard T, Chothia C. (1995). SCOP: A Structural 
Classification of Proteins Database for the Investigation of Sequences and 
Structures. J. Mol. Biol. 247: 536-540.  
 
Pontius J, Richelle J, Wodak SJ. (1996). Deviations from standard atomic volumes as 
a quality measure for protein crystal structures. J. Mol. Biol. 264: 121-136. 
 
Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963). Stereochemistry of 
polypeptide chain configurations. J. Mol. Biol. 7: 95-99.  
 
Ramachandran GN, Sasisekharan V (1968). Conformation of polypeptides and 
proteins. Adv. Protein. Chem. 23: 283-437. 
 
Read RJ, Adams PD, Arendall WB, III, Brunger AT, Emsley P, et al. (2011) A New 
Generation of Crystallographic Validation Tools for the Protein Data Bank. 
Structure 19: 1395-1412.  
 
Rohl CA, Strauss CEM, Misura KMS, Baker D (2004). Protein structure prediction 
using Rosetta. Method. Enzymol. 383: 66-93.  
 
Rocchia WS, Sridharan A, Nicholls E, Alexov, A. Chiabrera and B. Honig. (2002). 
Rapid grid-based construction of the molecular surface and the use of induced 
surface charge to calculate reaction field energies: Applications to the molecular 
systems and geometric objects. J. Comput. Chem. 23: 128-137. 
 



176 
 

Shapovalov MS, and Dunbrack RL, Jr. (2011). A smoothed backbone-dependent 
rotamer library for proteins derived from adaptive kernel density estimates and 
regressions. Structure, 19: 844-858. 
 
Touw WG, Vriend G (2010). On the complexity of Engh and Huber refinement 
restraints: the angle tau as example. Acta Cryst D 66: 1341-1350. 
 
Vriend G, Sander C (1993). Quality control of protein models: Directional atomic 
contact analysis. J. Appl. Crystallogr. 26: 47-60.   

 
Vriend G. (1990). WHAT IF a molecular modeling and drug design program. J. Mol. 

Graph. 8: 52-55. 
 
Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003). 
VADAR: A web server for quantitative evaluation of protein structure quality.  
Nucl. Acids. Res. 31: 3316-3319. 
 
Word JM, Lovell SC, Richardson JS, Richardson DC (1999). Asparagine and 
Glutamine: Using Hydrogen Atom contacts in the choice of side-chain amide 
orientation. J. Mol. Biol. 285: 1735–1747. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



177 
 

Chapter 6  

 

 

 

 

 

 

Computational design of the hydrophobic 

core of a beta-barrel protein  

 

 

 

 

 

 

 

 



178 
 

1. Introduction.   

 Protein design is a growing field of research in computational and experimental 

biophysics particularly related to the ‘inverse protein folding problem’. The problem 

concerns identifying protein primary sequences consistent with and supportive of a given 

fold, an idea which has found considerable application in the de novo design of targeted 

protein structures. Classically, from a purely structural point of view, design could be 

either of the hydrophobic core (Lazar et al., 1997; Tsai et al., 1997; Johansson et al., 

1998; Munson et al., 1996; Kashiwada et al., 2000) or of the full protein sequence 

(Shah et al., 2007; Fung et al., 2008). In recent years it has been somewhat guided by 

strong biomedical and industrial interest leading to the engineering of protein hormones 

and enzymes to perform existing functions under a wide range of conditions or to 

perform entirely new functions. Protein engineers are also attempting for the possible 

construction of a range of self-organizing macromolecules (Street and Mayo, 1999) 

which might come out successful in the far-future. However, the current state-of-the-art is 

to redesign portions of globular proteins to insert particular motifs, increase thermal 

stability or to modify functions. Successful applications in the field include engineering 

metal-binding centers (Lu and Valentinet, 1997) and the introduction of disulfide bonds 

(Chakraborty et al., 2005; Das et al., 2007; Indu et al., 2010). As far as full sequence 

design is concerned, earlier attempts typically led to poorly defined states or molten 

globules, instead of a single target fold. However, over the past two decades considerable 

success has been achieved.  

 

 The theoretical and computational aspects of protein design concern the 

involvement of two major steps 1) sampling methods and 2) fitness functions. Genetic 

algorithms subsequent to random sampling is generally used to generate a wide range of 

sequences whereas monte-carlo methods have been used extensively for side-chain 

conformer sampling. Fitness functions are generally integral and subsequent to the 

sampling procedure making the overall computational pipe-line to run in cycles until 

some pre-decided threshold of convergence is attained. Traditionally, statistical potentials 
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or pseudo-energy functions have been used to rank the desirability of each amino acid 

sequence for a particular backbone structure in atomistic protein design. The filtered 

sequences then require experimental validations. Thus in a ‘protein design cycle’ (Street 

and Mayo, 1999), an energy expression is used to determine plausible sequences which 

are subsequently synthesized and tested in the laboratory. Depending upon the correlation 

between the computed and experimentally determined properties of the designed 

sequences, terms are either added to or eliminated from the pre-existing energy functions 

to generate new sequences completing the cycle. The current chapter describes a 

computational method to re-design the hydrophobic core of a beta barrel single domain 

protein (Cyclophilin A of Lieshmania donovani : 2HAQ) where conventional random 

sampling methods have been used along with novel fitness functions based on 

complementarity and network analysis.   

 

 

2. Materials and Methods 

2.1. Random Sampling  

          The hydrophobic core of cyclophilin was identified by calculation of residue 

solvent accessibilities, contacts and visual inspection.  The core was found to be 

constituted of 18 residues in all (see Results). Random sampling was then performed 

from these shortlisted hydrophobic residues at each core position. A total of 105 

sequences were sampled wherein all short listed residues were sampled nearly equally at 

each position. 

 

2.2. Threading and Minimization  

          After the first round of screening at the sequence level (by applying cutoffs in van 

der Waals envelope volume, sequence entropy, secondary structural propensity: see 

Results) the full chain of the filtered sequences contained 1 to 18 alterations in the core 

w.r.t. the native. These were then threaded onto the native backbone with their side-chain 

torsions being optimized by SCWRL4.0 (Krivov et al., 2009). Hydrogen atoms were 
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then removed and rebuild by REDUCE. Subsequent to another round of screening at this 

stage (by applying cutoffs in packing densities, short contacts and presence of probable 

disulfide linkages: see Results), each of the filtered structures were energy minimized in 

CHARMM (Brooks et al., 1983) by 500 steps of Steepest Descents followed by 20000 

steps of Adopted Basis Newton-Raphson method with a gradient tolerance of 0.001 and a 

distance dependent dielectric multiplied by 4.0 using the CHARMM-22 forcefield 

(MacKerell, 1998). Backbone-flexibility in a design protocol has been given 

considerable importance in the literature (Desjarlais and Handel, 1999) which was 

suitably taken care of, during the minimization by applying soft harmonic restraints on 

main-chain atoms and Cβ (the constant harmonic force parameter being set to 5.0 for N, 

Cα, C and O atoms and 2.5 for Cβ). However, the energy minimized structures registered 

a Cα RMSD of as small as 0.022 (± 0.001) Å w.r.t. the native backbone.  

 

2.3. Packing Density 

           Static Van der Waals envelope volume (Gerstein and Richards, 2012) were 

summed up for each residue in a given core sequence , which was one of the filters 

applied in the initial stages. For calculating packing density  from  atomic coordinates a 

standalone software (http://bioinfo.mbb.yale.edu/hyper/mbg/SurfaceVolumes/code-mbg/bin-

alpha/) utilizing the voronoi method was used). Packing density (Pd) of a residue in a 

folded chain was then computed by dividing the van der Waals envelope volume (Vvdw) 

of the residue by its voronoi volume (Vvor). 

vor

vdw

V

V
Pd   

2.4. Sequence Entropy 

            Sequence heterogeneity was examined by computing shannon entropy of each 

core sequence by the following standard expression: 
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where Pi is the discrete probability of occurrence of the ith residue and Nc is the total 

number of residues in the core.   

 

2.5. Secondary Structural Propensity score 

           For each residue in a  randomly generated core sequence, its (Chou-Fashman) 

propensity to reside on the corresponding secondary structural element (helix / sheet) in 

the native structure was determined and summed up to give the propensity score (SCprop) 

for the sequence.  

 

2.6. Short Contact  

           For short-listing of hydrophobic residues at each position in the native core, a 

short contact was defined when any non-hydrogen atom (side / main chain) of a threaded 

conformer was found within a distance of 2.5 Å (or less) of any other non-hydrogen 

backbone atom contributed by the rest of the polypeptide chain.  

 

            For the second round of screening, short contacts (between two non-hydrogen 

side-chain atoms contributed by two different residues) were defined based on the 

particular atomic pair with their van der Waals radii being sampled from the AMBER94 

all atom molecular mechanics forcefield (Cornell et al., 1995). The van der Waals radii 

of the two atoms (in contact) were summed up and a constant value of 1.3 Å was 

subtracted to set the cutoff for short contact for each of pair. The choice of 1.3 Å was 

optimized such that the C-C short contact distance becomes 2.5 Å.  

 

2.7. Complementarity Scores 

             Surface and electrostatic complementarities were calculated for each buried or 

partially buried residues in a designed structure as described in Chapter 3. 

Complementarity Scores (CSgl, CScp, CSl) were computed as detailed in Chapter 4 and 

Chapter 5 for the whole chain as well as for the core.   
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2.8. Network Similarity and Distance 

           Initially the surface contact network was identified from the native core. The 

criteria to assign a link between two interacting side-chains have been described in 

Chapter 2. The network contained 12 links between 18 core residues (Table 1, Figure 1) 

with an embedded triplet clique (59-PHE, 71-TYR, 134-PHE) with linear branching (8 

links in all), two disjoint standalone links (each connecting 2 nodes) and a 3 residue open 

linear chain (see Chapter 2).  

 

Table 1. Surface Contact networks of the Cyclophilin core. Node1 is connected to 
Node2 by a non-covalent link.  

 

Node1 Node2 

29-VAL 47-LEU 

29-VAL 63-CYS 

31-PHE 45-ILE 

43-ILE 160-VAL 

47-LEU 59-PHE 

59-PHE 71-TYR 

59-PHE 134-PHE 

59-PHE 151-PHE 

71-TYR 134-PHE 

76-PHE 85-ILE 

85-ILE 164-ILE 

120-LEU 151-PHE 
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Figure 1. Links present in the surface contact network of the 2HAQ core. Figure 
constructed in RASMOL (Sayle et al., 1995).   

 

          Based on this (template) network, corresponding links were identified from other 

designed structures and the similarity between the two networks were quantified by the 

following measure where Ndesigned is the number of equivalent links (w.r.t. the template 

network) present in a given structure and Nnative is the total number of links in the 

template.  

 

native

designed
net

N

N
s   

 

            Another abstract distance measure (dnet) was formulated which quantifies the 

dissimilarity between two adjacency matrices (A and A`) corresponding to the template 

network and the corresponding network from the threaded structure. Thus, A(i,j) and 
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A`(i,j) represents the adjacency between the same ith and jth nodes in graphs A and A` 

since their residue positions are identical in both adjacency matrices. Distance between 

two such (undirected) graphs of identical size could be determined by counting the 

number of links that are present in one and absent in the other and then dividing  by the 

number of links present in either of the two graphs.  
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where A(i,j) and A`(i,j) are the matrix elements of adjacency matrices A and A` based on 

2HAQ and the threaded structure respectively and nL is the number of elements in the set 

E U E` where E and E` are the sets of links corresponding to graphs A and A`. It can be 

shown that dnet is formally a metric in a vector space.  

 

3. Results and Discussion 

3.1. Identification of the cyclophilin-core 

              2HAQ (CyclophilinA of Lieshmania donovani) was chosen as the target fold and 

its hydrophobic core was characterized prior to the design process. 2HAQ is a single 

domain globular protein constituted of a beta-barrel and two helices on either side of the 

barrel. The molecule has a single cysteine and therefore no disulphide bonds which 

makes it a good candidate to study folding and design. The cluster of residues composing 

the only hydrophobic core of cyclophilin within the barrel, also interconnect the 

secondary structural elements constituting the molecule. The details with regard to the 

construction of surface contact networks have been described in detail in Chapter 2. Since 

these residues constituting the core have low solvent accessibility their side chains have 

high surface and electrostatic complementarity w.r.t. to their immediate atomic 

environments and rest of the protein respectively. The contact network of 2HAQ was 
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thoroughly examined visually in RasMol (Sayle et al., 1995). 18 completely buried 

hydrophobic residues composed the core within the barrel located on helices and sheets, 

with the exception of 71-Tyr which was found to reside on a loop. 

 

 

 

 
 
Figure 2. The Cyclophilin core. A set of 18 completely buried in-faced hydrophobic 
residues spatially connecting all the major secondary structural elements (helices and 
sheets). Figure constructed in RASMOL (Sayle et al., 1995).  
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Table 2. Residues sustaining the Cyclophilin core, their burial, secondary structural 
location and side-chain shape and electrostatic complementarity.  
 

Residue Burial Secondary 
Structural 
Location  

sc
mS  sc

mE  

29-VAL 0.00 Sheet 0.608     0.605    

31-PHE 0.00 Sheet 0.623     0.306    

33-VAL 0.01 Sheet 0.579     0.589    

43-ILE 0.00 Sheet 0.501     0.631    

45-ILE 0.00 Sheet 0.542     0.681    

47-LEU 0.00 Sheet 0.562     0.436    

59-PHE 0.00 Helix 0.577     0.415    

63-CYS 0.01 Helix 0.630     0.412    

71-TYR 0.00 Loop 0.619     0.210    

76-PHE 0.00 Sheet 0.554     0.447    

85-ILE 0.00 Sheet 0.520     0.515    

120-LEU 0.00 Sheet 0.562     0.384    

134-PHE 0.00 Sheet 0.572     0.594    

136-ILE 0.00 Sheet 0.565     0.699    

151-PHE 0.00 Sheet 0.601     0.369    

160-VAL 0.03 Helix 0.450     0.550    

164-ILE 0.00 Helix 0.555     0.560    

179-VAL 0.00 Sheet 0.484     0.613    

 

3.2. Short-listing of hydrophobic residues at each core position based on  
complementarity and clashes w.r.t. the main chain atoms alone : 1st filter 
 

 To start the design process, all side-chains were initially removed from the native 

backbone of the protein and each position from the selected list of 18 residues were 

sequentially mutated to conformers of hydrophobic residues (ALA, VAL, LEU, ILE, 

PHE, TYR, TRP, CYS, MET: 71 conformers in total) in turn, sequentially selected from 

Dunbrack’s Rotamer library. The purpose of this procedure was to shortlist residues at 
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each position and more importantly to eliminate those cases where side-chain conformers 

are either involved in short contacts (two non-hydrogen atoms within 2.5 Å or less) with 

main chain atoms or fail to meet the threshold values in surface or electrostatic 

complementarity w.r.t to their immediate environment constituted of main chain atoms 

alone.  Prior to this calculation surface and electrostatic complementary values of buried 

side-chains (w.r.t native main chain atoms) had been estimated from polypeptide chains 

in the database DB2 (
mc

mS , 
mc

mE : see Chapter 3) and based on their statistics, the threshold 

values for allowed conformers were set to 0.25 and 0.30 for surface and electrostatic 

complementarity respectively. If at least one conformer of a particular hydrophobic 

residue passed the cutoff, then the amino acid was considered to be a potential candidate 

at that position. This method led to the elimination of specific hydrophobic amino acids 

at only two residue-positions (native: 63-CYS, 160-VAL; out of 18) where bulky 

residues were clearly involved in extensive steric clashes with the main chain atoms. 

However, the total number of possible combinations (reduced from (918=) 1.5009e+17 to 

1.3066e+14) was still astronomically high.  
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Table 3. Short-listed hydrophobic residues at each position in the native backbone 
of Cyclophilin.   
 

Residue Position 
(Native) 

Short-listed hydrophobic residues  

29-VAL MET, ALA, LEU, VAL, ILE 

31-PHE CYS, TRP, MET, PHE, ALA, VAL, ILE 

33-VAL LEU, VAL, ILE, TYR, TRP, CYS, MET, ALA, PHE 

43-ILE LEU, VAL, ILE, ALA 

45-ILE LEU, VAL, ILE, TYR, CYS, TRP, MET, PHE, ALA 

47-LEU LEU, VAL, TYR, CYS, PHE, ALA 

59-PHE LEU, VAL, ILE, TYR, TRP, MET, PHE 

63-CYS CYS, ALA 

71-TYR LEU, VAL, ILE, TYR, CYS, TRP, MET, PHE, ALA 

76-PHE LEU, VAL, ILE, TYR, CYS, TRP, MET, PHE 

85-ILE LEU, VAL, ILE, CYS, MET, ALA 

120-LEU LEU, VAL, ILE, TYR, CYS, TRP, ALA 

134-PHE LEU, VAL, ILE, TRP, MET, PHE, ALA  

136-ILE LEU, VAL, ILE, TYR, CYS, TRP, MET, PHE, ALA 

151-PHE LEU, VAL, ILE, CYS, TRP, MET, PHE, ALA 

160-VAL VAL, CYS 

164-ILE LEU, VAL, ILE, CYS, MET 

179-VAL LEU, VAL, ILE, TYR, CYS, TRP, MET, PHE, ALA  

 

3.3. Random Sampling  

 Random sampling was then carried out from the pool of short listed residues as 

probable candidates at each residue position. To restrict the number of trials, random 

sampling was restricted to 105 sequences, though it was ensured that the each short listed 

residue was sampled nearly equally at each position in the polypeptide chain. Sequence 

identities w.r.t. the native sequence at the core was calculated for all the designed 

sequences and sequences with 15% sequence identity (w.r.t.) native were found to be the 
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most frequent. The probability of retaining the native residue at each position is 0.11 if all 

the 9 hydrophobic residues are considered. However for the short listed set (shown 

above) the probability of selecting the native (core) residue falls within 0.11 to 0.25 for 

16 out of 18 core-positions. For only two positions (63-CYS and 160-VAL) the 

probability is 0.50. Thus the observation that most of the sequences exhibited a sequence 

identity between 10 – 20 % (w.r.t. native), could possibly be expected.  

 

 

 
Figure 3. Sequence identities of the initial randomly sampled ensemble of sequences 
w.r.t. the native core.  
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3.4. Screening based on sequence level static informations:  2nd filter  

 

 From the shortlisted residues at each hydrophobic position, 105, 18 residue 

sequences were then constructed with random selection of allowed residues at each 

position, which were then subject to several filters based on: 1) the sum of the van der 

Waal’s envelope volumes of the 18 residues 2) sequence entropy (to test for sequence 

heterogeneity) and 3) Chou-Fashman secondary structural propensity (see Materials and 

Methods). 2HAQ was structurally aligned with 17 homologues (by Dali server) and 

structurally equivalent core residues identified. Estimation of the van der Waals envelope 

volume of the core residues for these sequences gave an average of 1947.6 (± 28.59) Å3. 

Similarly, sequence entropy and Chou-Fashman propensities of these core sequences 

were found to be 2.44 (±0.16) and 23.06 (±0.66) respectively.  
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Table 4. Van der Waals envelope volume, sequence entropy and Secondary 
structural propensity of core sequences from Cyclophilin homologues.  
 
 

Cyclophilin 
Homologue 

Vvdw(Å3) Se SCprop 

1A58 1922.98 2.525 23.36 

1DYW 1935.02 2.405 22.11 

1IHG 1930.01 2.224 22.91 

1QOI 1952.89 2.525 23.04 

1XO7 1908.24 2.169 24.79 

1ZKC 1953.35 2.705 22.67 

2CFE 2001.33 2.288 22.87 

2CMT 1941.60 2.663 22.90 

2FU0 1892.04 2.523 22.92 

2GW2 1948.28 2.377 22.96 

2HAQ 1955.19 2.324 23.59 

2HE9 1986.46 2.330 22.76 

2HQJ 1977.63 2.505 22.82 

2PLU 1987.60 2.505 22.94 

2R99 1923.27 2.510 21.90 

2X25 1954.63 2.642 23.32 

2ICH 1928.32 2.224 24.17 

3K2C 1958.74 2.530 23.04 

 

 Based on these values, those sequences were selected which were found to have 

their summed van der Waals  envelope volumes  between 1900 to 2000 Å3, sequence 

entropy between 2.0 to 3.0 and secondary structural propensity greater than 20. Since the 

same amino acid could have nearly equal Chou-Fasman propensities for different 

secondary structural elements (helices and sheets), the cut off for this parameter was 
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relaxed. On the application of these filters, 33116 sequences were finally obtained. These 

sequences were then threaded onto the native backbone, with their side-chain torsions 

being optimized by SCWRL4.0. Hydrogens were then removed from all structures and 

rebuilt by REDUCE. Most of these filtered sequences exhibited a sequence identity of  

about 20 % (w.r.t. the native core) 

 

 

Figure 4. Sequence identities of the ensemble of sequences w.r.t. the native core 
subsequent to the first screening. 
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3.5. Cutoff on Packing density and short-contacts : 3rd  filter  

 

 For this set of structures, packing density for individual core residues were 

estimated along with possibility of disulfide bridges (based on a CYS-SG – CYS-SG 

distance cutoff : 2.25 Å) and number of atomic short contacts (see Materials and 

Methods). Initially, average packing densities of residues (along with their standard 

deviations) distributed in different burial bins (bin1: 0.0 ≤ Bur ≤ 0.05, bin2:  0.05 ≤ Bur 

≤ 0.15, bin3:  0.15 ≤ Bur ≤ 0.30; see definition of Bur in Chapter 3) were computed from 

the database DB2. For the 1st burial bin, the mean packing densities (µ) of residues were 

found within the range: 0.67 to 0.74 (± 0.05) irrespective of the residue identity. 

Similarly, for the 2nd and 3rd bins, the values were found to be within the range: 0.59 to 

0.68 (± 0.011) and 0.61 to 0.73 (± 0.16) respectively. Residues in the designed structures 

were distributed in two groups, 1) core residues with burial ≤ 0.30 and 2) non-core 

residues with burial ≤ 0.30. The structures (from the pool of 33116) were then filtered out  

which contained 

 1) three or more short contacts in the core, 

 2) eight or more short contacts in the overall structure, 

 3) no possible disulfide linkages, 

 4) 80% of the core residues having a packing density within the range of µ ± 2σ (µ, σ 

obtained from DB2) and   

5) 100% of the non-core buried or partially buried residues having a packing density 

within the range of  µ ± 3σ (DB2). 

This led to a reduction in the number of structures from 33116 to 7158. 

 

3.6. Complementarity Cutoff : 4th  filter  

 These structures were then energy minimized by CHARMM and their surface and 

electrostatic complementarities calculated for all buried and partially buried residues. For 

all the structures in this set, complementarity scores (CSgl, CScp  see Chapter 4) and  (CSl  
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see Chapter 5) were computed for the set of all core residues and the full chain separately. 

For the native structure (2HAQ), CSgl, CScp, CSl were found to be 3.59, 0.0154, 2.54 for 

the full chain and 6.01, 0.024, 3.16 for the core. In addition, there were 16 (out of 18) 

core residues in the probable region of the plot (completely buried: CP1) and none in the 

improbable region.  

Figure 5. Distribution of points from the native 2HAQ core in the Complementarity 
Plot (CP1).  
 

 For the designed structures,the solvent accessibility of the  core residues might  be 

different when compared with the native core. Only those designed structures were hence 
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forth considered,  whose designed core consisted of residues  which  were  all buried or 

partially buried and at least 16 (out of 18) residues were found to be in the probable 

regions of the plots (CP1, CP2, CP3).  This filter reduced the number of structures to 346. 

Compared to the native core the sequence identities of the designed core ranged from 0 – 

55.6 %  with a maximum observed between 22 – 28 %. 

 

Figure 6. Sequence identities of the ensemble of sequences w.r.t. the native core 
subsequent to the second screening. 

 1000 structures were generated by threading randomly selected hydrophobic 

residues (with their side-chain torsions optimized by SCWRL4.0 (Krivov et al., 2009)) 

and their complementarity scores (CSgl, CScp, CSl) were then calculated subsequent to 

energy minimization (by CHARMM (Brooks et al., 1983)). Interestingly, minimization 

seemed to raise the scores substantially. Scores were then averaged over the ensemble 

and found to be: CSgl: 2.53 (± 0.20), CScp: 0.011 (± 0.0008), CSl: 1.71 (± 0.32) (full 
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chain) and CSgl: 3.01 (± 0.79), CScp: 0.0112 (±0.003), CSl: 1.70 (±1.30) (core). Since CSl 

(core) had the highest standard deviation among all the complementarity scores, this was 

chosen as the initial parameter for further screening and from the set of 346 sequences 

(previously screened), only 28 (Table) were found to exceed the mean (1.70) in CSl (core) 

obtained from the random structures.  

       

Network parameters  snet, dnet (see Materials and Methods) along with the accessibility 

score (rGb) and link density (Ld see Chapter 2) were then  computed for both the full 

chain and core for these 28 sequences. Since the native structure contained a triplet clique 

(59-PHE, 71-TYR, 134-PHE) in the core, this geometrically constrained packing motif 

was also exhaustively searched for in the cores of the short listed sequences. Both rGb 

(0.0544 ± 0.0029) and Ld (core: 0.1 ±0.018; full-chain: 0.049 ±0.007) were found to be 

uniform for all sequences and very close to their corresponding native values (rGb : 

0.059, Ld (core): 0.05, Ld (full-chain):  0.08).  
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Table 5. The selected list of 28 core sequences and their corresponding scores. Nprob 
is the number of residues found in the probable region of the CPs out of 16 core residues.  
 

Ref Sequence Seq Id 
(core 
%) 

CSl  
(core) 

Nprob  
(core) 

CSgl  
(core) 

CScp  
(core) 

Presence 
of a triplet 

clique  

s1 AAMVFLMAYFLLWIAVLL 33.3 2.06 16 3.26 0.013 - 

s2 AIFAVLFALIMYFWIVLA 22.2 2.04 16 3.65 0.012 - 

s3 LFIACLMAFWVYFAAVMM 22.2 2.03 16 3.29 0.014 - 

s4 LFFLCLYAIFMIMMCVCC 22.2 2.01 16 4.00 0.016 - 

s5 VWVLILVAIVMVIWAVIC 33.3 1.99 16 4.04 0.014 - 

s6 IVVLLLLAWICIVWCVCM 16.7 1.99 17 3.87 0.014 - 

s7 MMFAIVYACLLCIYMVMV 16.7 1.97 17 4.12 0.017 - 

s8 VFIAWFVAIFCYFAAVLV 33.3 1.96 16 4.08 0.015 - 

s9 MFYAIVIAFLCAFMFVLI 27.8 1.96 16 3.75 0.014 - 

s10 MWMLMLFAYMVALIAVCV 33.3 1.96 16 4.22 0.014 - 

s11 IAVIMYIAVFLCFMFVML 33.3 1.95 16 5.08 0.020 - 

s12 LFVIMFMAIVCAFMIVLV 33.3 1.94 16 4.31 0.015 - 

s13 AAVVFCFCFFLVFMFVCC 38.9 1.94 17 4.34 0.014 - 

s14 ACAIVYFAFYVWFMCVMI 22.2 1.94 16 5 0.017 - 

s15 MIIIMLVAYIVCFIWVVC 33.3 1.93 16 4.70 0.015 - 

s16 MMFAVVFAALCAIFWVIV 22.2 1.93 16 4.22 0.015 - 

s17 VFVAIVVAAYMWFVFVIL 44.4 1.93 16 4.59 0.018 - 

s18 ACVLCLYAYYMLFILVMC 38.9 1.92 16 4.07 0.016 + 

s19 MCAVYYVAFYVVWMMVVA 5.6 1.92 17 4.30 0.017 - 

s20 VVVIFCFALIVVLMLVVI 27.8 1.92 16 4.60 0.016 - 

s21 VCYVICWACIVWMMCVVV 22.2 1.91 16 4.18 0.014 - 

s22 VAFVFVWALVILIWVVLV 27.8 1.90 16 4.74 0.018 - 

s23 LAFVMLYALWCIALFVLI 16.7 1.90 18 3.94 0.015 - 

s24 LMLACYLAFFIWFIAVVV 33.3 1.86 17 5.02 0.019 - 

s25 VMVVYVFCVWLLFVVVMA 38.9 1.85 17 5.18 0.018 - 

s26 AILIFLWCYFCALVFVIV 50.0 1.85 17 4.58 0.018 - 

s27 VMFAILFALLILFLLVLV 50.0 1.85 16 5.27 0.021 + 

s28 VVFAFFIAYMMIIYAVLV 22.2 1.85 16 5.43 0.018 + 
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As can be seen from Table 5, all the designed structures gave much higher scores in CSgl 

and CScp  (core) than the estimate of the same measures from the randomly generated 

structures. However, CSgl and CScp were clearly found to be more sensitive indicators of 

the overall compatibility of these core-sequences with the native fold and these scores for 

some of the designed structures exceeded the average obtained from random substitutions  

by a very good margin (CSgl: 3.01 (± 0.79), CScp: 0.0112 (±0.003)). Thus, from these 28 

sequences, 6 sequences with CSgl score (core) greater than equal to 5.00 were finally 

selected (s28, s27, s25, s11, s24, s14) of which  two (s27, s28)  contained a triplet clique 

in the core.  

 

4. Conclusion 

 The primary objective of the study was to  apply  the complementarity measures 

in the redesign of the hydrophobic core in cyclophilin from L. donovani. In addition, 

other measures based on sequence heterogeneity, volume, clashes and packing densities 

were also implemented to discard improbable sequences at different stages. Use of 

network parameters clearly shows that at least theoretically there can be multiple packing 

arrangements which can sustain the native core. Thus, along with the evolutionary 

conserved native core-packing arrangement, alternative cores could also satisfy the 

general packing constraints (shape complementarity, packing density, avoidance of steric 

clashes etc), an observation which definitely requires further experimental validation. 
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Appendix I 

Persistence map of dynamic contact networks using shape 

complementarity : its evolutionary relationship 

 

A 50 ns molecular dynamic simulation was carried out at room temperature (310 

K) on cyclophilin from Leishmania donovani (2HAQ). The problem was approached 

from a network perspective of the protein interior and both static and dynamic features of 

such networks were analyzed in detail. 2HAQ was structurally aligned with 17 

homologues and surface contact networks (see Chapter 2) were constructed. Following is 

a detailed description of the analysis carried out on the static structures.  

 

The 17 structures belonging to the cyclophilin-like fold were chosen from the 

SCOP database (Murzin et al., 1995) which had greater than 40% sequence identity 

upon structural alignment with 2HAQ (PDB ID_Chain (RMSD (Å), sequence identity 

(%)): 1XO7_A (0.5, 74), 3ICH_A (0.8, 65), 2PLU_A (1.3, 63), 2X25_B (1.2, 61), 

2CFE_A (1.2, 60), 1QOI_A (0.8, 57), 1A58_A (1.2, 57), 1IHG_A (1.2, 57), 2R99_A 

(1.3, 57), 1DYW_A (1.4, 57), 2HQJ_A (1.4, 57), 2CMT_A (1.2, 56), 3K2C_B (1.4, 54), 

2GW2_A (0.8, 53), 2HE9_A (0.8, 53), 2FU0_A (1.3, 47), 1ZKC_A (1.2, 42)). Surface 

contact networks (at Sm ≥ 0.4, Ov ≥ 0.08 for both A→B and B→A in  a A↔B link; see 

Chapter 2) were generated for all the 17 native structures along with 2HAQ. Unlike 

networks defined while describing packing motifs (see Chapter 2), these networks could 

contain unconnected disjoint components and even isolated binary links. Here the 

primary emphasis was to represent a fold as a unique subset of relevant links, highly 

conserved amongst members of that fold. Pairwise structural alignment (using Dali 

Server (Holm and Rosenstrom, 2010)) with 2HAQ (considered to be the template) 
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provided the mapping between the nodes of 2HAQ and each of the 17 homologous 

proteins. In case of insertions-deletions or non-alignment, the node was considered to be 

absent in the related protein. Every link in the contact network of 2HAQ was searched 

systematically in the 17 homologues and counted for the number of times the 

corresponding (mapped) nodes were found to be present and connected. Only those links 

from 2HAQ were retained which were present in at least 75% of the other 17 

homologues. This led to a subgraph of 22 links which could be considered as the 

evolutionarily conserved network (CycnetEC) representative of the Cyclophilin-like fold 

(Figure 1).  

 
 
Figure 1. The evolutionarily conserved surface contact network constituting of 22 
links in the Cyclophilin-like fold. Figure constructed in RASMOL (Sayle et al., 1995). 
 

2HAQ was selected as a representative member of the Cyclophilin-like fold and 

based on the initial crystal structure, a molecular dynamics (MD) simulation was carried 

out at 310 K (37°C). Initially the protein was solvated in a cuboidal box of dimensions 

78.673 × 68.897 × 78.317 Å3 and the overall charge of the system neutralized by the 

addition of a single Na+ ion through the xleap module of AMBER (Dejoux et al., 2001). 
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11088  waters were then added following the TIP3P model (Jorgensen et al., 1983). The 

structure was then energy minimized initially for 200 steps of steepest descent followed 

by 19800 steps of ABNR incorporated in the SANDER module (AMBER), utilizing the 

force field and molecular topologies implemented in the AMBER 2002 force field. The 

energy-minimized structure was heated up to 310 K in NAMD (James et al., 2005). The 

MD simulation run was then carried out for 50 ns in NAMD involving 50000 steps with a 

snapshot being collected at each picosecond interval. A NPT ensemble with the Langevin 

piston temperature set to 310 K was incorporated with the pressure being fixed at 1.0325 

bar. SHAKE was incorporated to keep the bond-lengths constrained with a tolerance 

level of 0.005 Å. Visual molecular dynamics program (VMD) (Humphrey et al., 1996) 

was used to view the trajectories obtained from NAMD and to obtain the coordinates for 

the snapshots.  

Root Mean Square deviations of the Cα atoms with respect to the initial crystal 

structure was calculated for the entire 50 ns trajectory and the system was found to reach 

equilibration within approximately 4ns and oscillated thereafter in the range of 1.38 Å (± 

0.11). Thus, the initial 4ns data were discarded and the rest of the 46ns trajectory were 

subjected to further analysis.  

 

Figure 2.  Cα-RMSD of the 50 ns molecular dynamic trajectory of 2HAQ.  
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A snapshot was selected at an interval of 20 ps (one per 20 snapshots) and surface 

contact networks were generated for each of them (at Sm ≥ 0.4, Ov ≥ 0.08 for both A→B 

and B→A in a A↔B link; see Chapter 2). Thus the analysis were carried out on 2300 

snapshots. All possible links in a surface contact network obtained from each of the 

selected snapshot was then tested for adjacencies in a 166 × 166 symmetric matrix 

corresponding to 166 residues in 2HAQ. Each possible link was then counted for the 

number of times it appeared in a snapshot (i.e., satisfied the contact criteria) and divided 

by the total number of snapshots to obtain the persistence of the link in the dynamic 

trajectory. Links with high dynamic persistence (≥ 0.75) were accumulated and this 

subset of 28 links could be considered as the dynamically persistent network (CycnetDP) 

representative of the cyclophilin-like fold.  

 

Figure 3. The dynamically persistent surface contact network constituting of 28 
links generated from the 50 ns MD simulation of 2HAQ (representative of the 
Cyclophilin-like fold). Figure constructed in RASMOL (Sayle et al., 1995).  
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A thorough comparison was then carried out between the evolutionarily conserved 

network (CycnetEC) and the dynamically persistent network (CycnetDP) representative 

of the Cyclophilin-like fold in terms of network parameters (snet, dnet) described in 

Chapter 6. Constituent links of both these networks were found to connect all the crucial 

secondary structural elements (Helices and Sheets) and a total of 15 links were found to 

be common between them (which exceeded 0.75 in both evolutionary conservation and 

dynamic persistence). This gave an snet  and dnet values of 0.42 and 0.57 respectively 

between the two networks. All these 15 common links had both the dynamic persistence 

and evolutionary conservation greater than 0.80 (Table 1). This common network 

contained one triplet clique and several discrete open linear chains and traversed the 

entire three dimensional structure by connecting between the beta sheets and anchoring 

helices (both sheet-sheet, sheet-helix contacts). Thus, this could be considered as the 

evolutionarily conserved and dynamically stable optimal subgraph to hold the native 

cyclophilin-like fold.  
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Table1. The evolutionarily conserved and dynamically persistent links in the 
Cyclophilin-like fold.  
 

Node1 Node2 Dynamic 
Persistence 

Evolutionary 
Conservation 

62-LEU 71-TYR 0.995 0.900 

59-PHE 151-PHE 0.995 0.950 

85-ILE 164-ILE 0.993 0.900 

106-PHE 130-ASN 0.990 0.900 

120-LEU 151-PHE 0.988 0.900 

115-HIS 150-VAL 0.978 1.000 

59-PHE 71-TYR 0.975 0.850 

55-PHE 151-PHE 0.966 0.950 

122-MET 151-PHE 0.950 0.950 

55-THR 122-MET 0.939 0.950 

31-PHE 181-ILE 0.930 0.950 

136-ILE 161-VAL 0.928 0.850 

76-PHE 85-ILE 0.856 0.850 

136-ILE 154-VAL 0.842 0.810 

115-HIS 144-LEU 0.807 0.900 
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Figure 4. The evolutionarily conserved and dynamically persistent optimal 
subgraph holding the  Cyclophilin-like fold. Figure constructed in RASMOL.  
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Appendix II 

Geometry and electrostatics of Salt bridges within proteins 

As has been demonstrated by McCoy et al., (McCoy et al, 1997) salt bridges are 

important at the interface in determining the magnitude of electrostatic complementarity, 

however, since all the other charges from the two interacting molecules contribute to the 

potentials, complementarity can still be significant even when the salt bridges are 

computationally neutralized (Chapter 1). There does not appear to be a universal rule 

regarding the role of salt bridges in stabilizing protein structures. Due to desolvation 

effects, they are in general considered to be destabilizing (Honig and Yang, 1995), 

though instances have been observed where networks of ionic bonds contribute favorably 

to the thermal stabilization of the protein (Bogan and Thorn, 1998; Torshin et al., 

2002; Di Primo et al., 1997; Walker and Causgrove, 2009). In order to study the 

pattern of networks (constituted by ionic bonds) and their associated Em values, a total of 

3076 networks were extracted from the database, DB2 and classified according to a 

topological scheme, described in detail in Chapter 2. Briefly, charged residues 

(represented as nodes) are connected by an edge when there exist an ionic bond (or salt 

bridge) between which was detected when a positively charged nitrogen atom of lysine 

(NZ), arginine (NH1, NH2) or positively charged histidine (HIP: ND1 NE2, both 

protonated) were found to be within 4.0 Å of a negatively charged oxygen atom of 

glutamate (OE1, OE2) or aspartate (OD1, OD2). 

A unique network-topology is numerically represented by n concatenated strings 

of numbers separated by delimiters (where n is the number of nodes in the network). 

Each string begins with the degree of a node (from the highest degree node following a 

descending order in degrees), followed by the degrees of its linked nodes sorted in 

descending order. 

 The distribution of such networks was found to be dominated by isolated ionic 

bonds (11-11: 2445, Figure 1) followed by bifurcated salt bridges consisting of three 

nodes (211-12-12: 475). For networks, with number of nodes greater than three, the 
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overwhelming majority fell into the class of open linear chains (see Chapter 2) or their 

variants. The reason for this topological preference has obviously to do with the fact that 

no two adjacent nodes can carry like charge. A few examples of four membered closed 

rings either isolated or ‘fused along an edge’ (see Chapter 2) were also found. For closed 

rings, the topological constraint due to charge allows only an even number of nodes.  

 

 

 

Figure 1. Statistical distribution of networks of ionic bonds.  Each network topology 
is demonstrated by an identifier numerical string. The number of such networks found is 
given in parenthesis below the identifier.  
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 Overall, a mild enhancement in Em (see Chapter 3) was observed for charged 

residues, involved in salt bridges (Figure 2), with the exception of histidine which was 

found to prefer metal coordination sites more than salt bridges. The highest average value 

of 
sc

mE  was obtained for Glutamate (0.68) which also had the highest increment in <
sc

mE > 

upon inclusion into a salt bridge. Arginine exhibited the highest propensity to form ionic 

bonds (5.83), compared to other charged residues (Glu: 4.77, Asp: 3.92, Lys: 3.43). The 

participation of histidine in such networks was by and large negligible (propensity: 0.22). 

The highest value in <
sc

mE > was obtained for Glutamate (0.68) amongst salt bridge 

forming residues.  

 

Propensity (Pr(x,s)) of a charged residue, x to go into a salt bridge was computed 

by the following expression:  

),(

),(
),(

),(

),( Pr

dtN

dxN

stN

sxN

sx   

where N(x,s) is the count of the residue x found in salt bridges, N(t,s) is the total 

number of residues involved in salt bridges, N(x,d) and N(t,d) is the count of residue x 

and the total number of residues in the database. 

 

Several instances have been recorded where bifurcated salt bridges contribute 

more to the electrostatic stabilization within proteins than the isolated ionic bonds 

(Torshin et al., 2002; Di Primo et al., 1997; Walker and Causgrove, 2009). Bifurcated 

salt bridges were further analyzed for compositional and geometrical bias (Table 1). 

Compositional preferences were clearly distinguishable for arginine containing salt 

bridges (75.4% of the whole set) with Glu-Arg-Glu having the highest occupancy (17%). 

Similar preferences have been previously observed for arginine-glutamate salt bridges in 

case of helix stability (Walker and Causgrove, 2009).  
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Figure 2. Charged residues involved in salt bridges lead to only mild enhancement 

in
sc

mE . The figure shows mean values of 
sc

mE (filled thick bars) along with their standard 
deviations (thin error bars) for charged residues involved in salt bridges (gray), not 
involved in salt bridges (light gray) and pooled together (deep gray). As can be seen, 
histidine (positively charged) shows a reverse trend. 

 

The angle subtended by three residues forming a bifurcated salt bridge was 

computed as follows: except for lysine, which has a unique charged nitrogen atom (NZ), 

the effective (or resultant) charge centers were determined as the midpoint of the two 

(degenerate) charged O (aspartate, glutamate) and N (arginine, positively charged 

histidine) atoms. The bifurcation angle (γ) between the two vectors connecting the three 

charge-centers was then computed. Geometry of the bifurcated salt bridges were analyzed 

in terms of the bifurcation angle, γ which was found to be obtuse and fairly well 

constrained (~110° ± 30°) irrespective of the residue composition.   
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Table 1. Composition and Geometry of the Bifurcation angle (γ)  

Composition Count  Percentage  <γ>  
GLU-ARG-GLU 81  17.05 120.6   (28.2) 
ASP-ARG-GLU 52  10.95 121.1   (26.1) 
GLU-ARG-ASP 45  9.50 110.8   (29.1) 
ASP-ARG-ASP 43  9.05 112.3   (27.3) 
ARG-GLU-ARG 35  7.37 97.4   (37.4) 
ARG-ASP-ARG 28  5.89 92.9   (30.7) 
GLU-LYS-GLU 26  5.47 116.0   (21.7) 
LYS-GLU-ARG 26  5.47 102.1   (27.7) 
ARG-GLU-LYS 26  5.47 100.4   (40.7) 
ASP-LYS-ASP 26  5.47 93.6  (26.1) 
LYS-GLU-LYS 22  4.63 113.8   (26.0) 
GLU-LYS-ASP 18  3.79 109.0   (14.3) 
ASP-LYS-GLU 13  2.74 115.3   (22.9) 
ARG-ASP-LYS 13  2.74 93.8  (33.9) 
LYS-ASP-ARG 8  1.68 95.4  (20.9) 
LYS-ASP-LYS 7  1.47 76.8    (8.4) 
LYS-ASP-HIS 2  0.42 126.1   (15.4) 
GLU-HIS-GLU 1  0.21 165.4    
ARG-GLU-HIS 1  0.21 70.9  
GLU-HIS-ASP 1  0.21 70.1 
ASP-HIS-ASP 1  0.21 169.6 
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