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Abstract
COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its
pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity
is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain
(RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key
interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the
RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable
protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design.
Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual
affinity), the RBDSpike–ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface.
Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of
solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently “reaction-prone.” The designed
mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-
affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The
results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled
with strategic “hydrophobic ↔ polar” mutations serve as a potential breakthrough.
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Introduction

The world is currently facing an unprecedented global health
crisis due to the sudden pandemic outbreak of a “naturally
evolving” [1] virus known as Severe Acute Respiratory
Syndrome Coronavirus-2 (SARS-CoV-2) [2, 3]. The disease
condition associated with SARS-CoV-2 known as COVID-19
was first reported in human subjects in the city of Wuhan,
China, in December 2019 [4]. In a span of 13 months, more
than 110.75 million people got infected with a death toll rising
to 24,55,131 (WHO report, as of 4:21 pmCET, February 21st,
2021). The situation has challenged the very foundation of our
existing global health management system, threatening with
economic crisis that has never been faced before. The SARS-
CoV-2 is a positive stranded RNA virus and a β-coronavirus.
It shares a significant amount of genomic identity (79.5%)
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with its related previous strain SARS-CoV which got out-
spread in 2003 as an endemic, affecting more than 8000 indi-
viduals. However, the fatal impact and current nature of the
SARS-CoV-2 pandemic is indicative of an altogether different
functional nature of the virus from that of SARS-CoV [5].
Both SARS-CoV and SARS-CoV-2 were originated from
bat but the immediate host from which SARS-CoV-2 got
transmitted to human remains to be unclear [5]. The high
person-to-person transmission rate of SARS-CoV-2 due to
an efficient immune evasion and infectivity are of great con-
cerns from the human intervention perspective [6–14]. So,
taking into consideration of the potential pre- and post-
symptomatic transmissibility of SARS-CoV-2, it is an urgent
biomedical need to contain the spreading of this virus either
by designing antiviral drugs or by vaccine development.

The host receptor recognition by SARS-CoV-2 and its entry
mechanisms are important determinants of viral infectivity, tis-
sue tropism, and pathogenesis. Alongside, these are also the
key targets to modulate host immune surveillance and intervene
the viral entry into host cells. Mature SARS-CoV-2 expresses
envelop anchored trans-membrane Spike (S) glycoproteins that
mediate the host cell entry. Distinct pre- and post-fusion con-
formational states of the S protein have very recently been
structurally identified by cryo-electron microscopic (EM) stud-
ies [15] with the proposition of a “surprisingly low kinetic
barrier” for the conformational transition. Primed by a confor-
mation dependent proteolytic cleavage, the membrane fusion
thus not only acts as the necessary mechanism for the host cell
entry of the viral genetic material but also leads to two
kinetically-related yet distinct conformations of the S protein.
The pre-fusion conformation represents the full-length S pro-
tein, while the post-fusion form is a cleaved fragment left em-
bedded on the viral membrane after the cleavage [15]. The post-
fusion form is presumed to have subsequent functions, not only
limited to the membrane fusion alone, for being strategically
decorated with N-linked glycans [15]. Being the initial media-
tor of the essential host –pathogen interaction cascade, the pre-
fusion form appears to be the more vulnerable [15] of the two
forms. Both the forms are found to be biologically expressed
and assembled as trimers; the post-fusion form is an elongated
coiled coil and is thus more stable and rigid. The full-length
pre-fusion S protein consist of two domains, the S1 receptor
binding domain (henceforth referred to as RBDSpike) and the S2
membrane fusion domain, wherein, the three S1 receptor bind-
ing heads are situated on the top of the trimeric membrane
fusion S2 stalk [16]. The S1 domain is further consisted of
two subdomains—the N-terminal subdomain (NTD) and the
C-terminal subdomain (CTD) [17]. The pre-fusion conforma-
tion has been resolved structurally at 2.8 to 3.3 Å resolution by
several recent cryo-EM studies capturing minor variations be-
tween its different (closed/stabilized) states (PDB ID: 6VXX
[18], 6CRZ [19], 6XR8 [15])—in all of which the RBDSpike

remains structurally unaltered (see Supplementary Fig. S1). In

addition to the RBDSpike, the pre-fusion form also contains a
receptor binding motif (RBMSpike), both of which reside in the
CTD in S1 unit [17].

The host cell entry of the SARS-CoV-2 involves a cascade
of molecular interactions which has been revealed to be trig-
gered by the binding of the RBDSpike to human angiotensin-
converting enzyme-2 (ACE2) embedded on the membranes of
human lung cells [20–22]. The experimental structure of
SARS-CoV-2 RBDSpike conjugated with the human ACE2 re-
ceptor has also been resolved by X-ray crystallography at
2.68 Å (PDB ID: 6VW1) [21]. Upon this RBDSpike–ACE2
interaction, the Spike protein requires a proteolytic cleavage at
its S1/S2 junction for S2 to gain an irreversible conformational
change which leads to a successful host cell entry. A furin1

cleavage site has exclusively been found in the S1/S2 boundary
of SARS-CoV-2 Spike protein recently [16]. Interestingly,
RBDSpike has a stronger affinity for ACE2 than that of the
whole Spike protein. This implies a more complex mechanism
behind the molecular access of SARS-CoV-2 into the host cell
[21]. Moreover, the S1 trimer continuously switches between a
“lying down” and a “standing up” position onto the S2 subunits
[15, 16, 23]. When S1 (composed of three monomeric
RBDSpike units) is at a “lying down” position (or “down” state),
it remains hidden and unexposed enabling the SARS-CoV-2 to
escape the host immune surveillance [16]. It is only the “stand-
ing up” position (or, “up” state) of S1 that enables it to bind
with the ACE2 receptor with a higher affinity compared to that
of other related SARS-CoV. Taking into consideration these
intricate complex features, SARS-CoV-2 stands out to be one
of the most challenging pathogens ever to be contained. In
addition, there are significant evolutionary differences in the
antigenic properties of SARS-CoV and SARS-CoV-2 [18] in
spite of sharing 70% sequence similarity in their RBDs and
docking to an identical site in the ACE2 receptor. These strate-
gic critical differences potentially lead to the ineffectiveness of
a panel of monoclonal antibodies raised against SARS-CoV
towards the neutralization of SARS-CoV-2 [24]. So, develop-
ing an effective vaccine targeting the S protein of SARS-CoV-2
remains complex and might take more time than can be
afforded in this emergency. So, it is of high value to explore
alternative means to design effective antivirals/bio-therapeutics
that can successfully target the SARS-CoV-2 host cell entry
thereby curbing down its infectivity.

Since the onset of the current pandemic, enormous efforts
are continuously being made for repurposing already ap-
proved drugs [25–27], unfortunately with very limited suc-
cess. Developing strategically designed small molecules and
screening them against the viral infectivity is another ap-
proach to find a potential inhibitor to block key interactions
of SARS-CoV-2 with host cells. Despite some initial promis-
ing outcomes, in most of the cases, these drugs are unable to

1 Proprotein convertase of the host
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stop the spread of COVID-19. Thus, developing strategic mol-
ecules to block the guest-host binding remains a clinically
unmet goal. To that end, peptide-based approaches to design
antiviral bio-therapeutics might be a fruitful alternative strate-
gy [28]. The availability of experimental atomic structures of
the SARS-CoV-2 RBDSpike complexed with the ACE2 recep-
tor [19, 29] serves as a great resource for this purpose, helping
in the detailed understanding of the binding mechanism, and
thereby, facilitating the design. The binding affinity of SARS-
CoV-2 with the “ACE2 peptidase domain α-helix” is much
stronger than SARS-CoV. Designing a peptide disruptor
would therefore be an ideal choice over screening of small
molecule inhibitors because of its higher efficacy in covering
the extended protein contact interface, potentially acting as a
compelling competitive inhibitor [28, 30].

In this present study, we aim to design non-reactive struc-
tural mimics of SARS-CoV-2 RBDSpike which can serve as
potential competitive inhibitors for its binding to the host
ACE2 receptor. These polypeptide-based mimics have been
designed to bind stably with high affinity to the interacting
surface of ACE2 containing multiple contact hotspots. They
would thus potentially interfere with the binding of the native
SARS-CoV-2 RBDSpike to ACE2 by already occupying the
binding sites. To that end, we adapted a protein design ap-
proach with iterative cycles of screening followed by
Molecular Dynamics (MD) simulations of the finally selected
structural mimics. The objective of the exercise was to exam-
ine the dynamic stability of the prescribed binary protein-
protein interaction (PPI) complexes formed with ACE2. We
followed two alternative sampling strategies for the design,
based on (i) alteration of hydrophobic character of the mutable
amino acids at the RBDSpike–ACE2 interface and (ii)
homology-based threading followed by performing strategic
“gain-of-function” mutations. Scoring of the designed binary
PPI complexes were based on shape and electrostatic comple-
mentarities {Sc, EC} [31, 32] which are essential prerequisites
of binding affinity and stability and may thus be envisaged as
coordinate driven representative measures of the same, as rea-
soned in the paper. The SARS-CoV-2 RBDSpike is an inde-
pendently foldable protein domain and remains resilient to
conformational changes yet after acquiring a series of muta-
tions along evolution. The prescribed designed protein binary
complexes are therefore expected to fold naturally as self-
sustaining protein units.

Interestingly, the RBDSpike–ACE2 interaction in SARS-
CoV-2 appears to have a quasi-stable character in spite of
having a high affinity for the interaction. The effect is more
pronounced if compared to its evolutionary ancestor, SARS-
CoV. This can be further envisaged as having a bouncing
nature of the ligand upon receptor binding. This enables the
molecule to quickly get released from its receptor-site to be
able to bind to a greater number of amenable receptors in
nearby cells. It therefore appears that the key molecular player

of the most determining interaction in COVID-19 has an in-
herent structural potential to have a high interaction cross-
section with its cognate receptor. This has been vividly sur-
veyed and discussed in the light of molecular evolution of the
RBDSpike from SARS-CoV to SARS-CoV-2. Taken together,
the current study has both a basic and an applied content and
provides a novel approach to design polypeptide-based inhib-
itors against SARS-CoV-2 RBDSpike–ACE2 binding.
Subsequent wet lab experiments and testing of the prescribed
designed sequences on biological subjects may potentially
offer an alternative powerful therapeutic strategy to combat
SARS-CoV-2, due to be carried out in the next phase.

Materials and methods

Details of experimental structures used in the study

For the all-important pre-fusion form of the viral Spike pro-
tein, we used the cryo-EM structures in its “closed state”
(PDB ID: 6VXX; solved at 2.8 Å, 22812 protein atoms), that
of a “stabilized variant” (PDB ID: 6CRZ; solved at 3.30 Å,
25024 protein atoms) and that of the recent most full-length S
protein (PDB ID: 6XR8; solved at 2.9 Å, 25995 protein
atoms) from the Protein Data Bank [33]. As a single represen-
tative structure, 6VXX was preferred among the three for
having the best resolution. The three structures had variation
in minor details (missing loops, glycans, etc.) which was
reflected in their all-atom RMS deviation upon pairwise struc-
tural superposition (average, 3.75 Å for an average length of
23,255 aligned non-hydrogen protein atoms). The same aver-
age RMS deviation for the RBDSpike in the three structures
was even lower (2.2 Å) for a stretch of ~190 aligned residues.
Visual structural investigation confirmed that this small devi-
ation was due to the conformational variation of the disor-
dered loop regions while the relative orientation of the sec-
ondary structural elements (helices and sheets) was virtually
identical in all structures (see the “Results and discussion”
section). When the three structures were further superposed
(in turn) onto the same (ligand) domain in the ACE2-bound
binary complex (PDB ID: 6VW1), the average all atom RMS
deviation reduced even further to 1.36 Å.

The other coordinate files used in the core-study corre-
spond to ligand-receptor protein complexes, pertaining to
most if not all representative structures of the RBDSpike

(Receptor Binding Domain, UNP Residues: 323–502)-
Angiotensin-Converting-Enzyme (ACE2) receptor available
at the Protein Data Bank [33] till date (28/02/2021). The ones
that were of prime importance among these are RBDSpike of
SARS-CoV complexed with human ACE2 (PDB ID: 2AJF;
solved at 2.9 Å) and RBDSpike of SARS-CoV-2 complexed
with human ACE2 (PDB ID: 6VW1; solved at 2.68 Å).
Among the rest of the structures used, there were human
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strains of the ancestral viral RBDSpike (i.e., the 2002–2003
SARS-CoV) complexed with human-civet chimeric receptors
(two of them, PDB ID: 3D0G; solved at 2.8 Å and PDB ID:
3D0H; solved at 3.1 Å). There was also civet strain of the viral
RBDSpike complexed with human ACE2 (PDB ID: 3SCJ;
solved at 3.0 Å) and RBDSpike from SARS-CoV epidemic
strain complexed with human-civet chimeric receptor ACE2:
(PDB ID: 3SCL, solved at 3.0 Å). Importantly, the only binary
PPI complex representative of CoV-2 (PDB ID: 6VW1) had a
human ACE2 receptor in it.

Additionally, equivalent/similar binary PPI complexes
from MERS (PDB ID: 4L72; MERS-CoV complexed with
human DPP4, solved at 2 Å) and Ebola (PDB ID: 5F18; viral
glycoprotein bound to its endosomal receptor Niemann-pick
C1, solved at 3 Å) were also assembled as a means to compare
the receptor-ligand binding in terms of affinity and stability
from complementarity estimates. Patches of residues missing
due to poor electron densities were modeled using
MODELLER [34], wherever applicable. These missing
patches essentially mapped to an equivalent stretch in all the
RBDSpike which was a disordered loop far from the ACE2
binding site. All sequence alignments, pairwise and multiple,
were performed by Muscle [35]. Sequence similarities wher-
ever calculated used the EMBOSS stretcher web-tool
implementing its global alignment module (https://www.ebi.
ac.uk/Tools/psa/emboss_stretcher/).

Protein design: side-chain threading and shaking the
designed binary PPI complexes

Our approach was to target and build inhibitors of the SARS-
CoV-2 RBDSpike to block its binding sites in the ACE2 recep-
tor. Hence, all mutations were performed on the native ligand
molecule alone while retaining the native sequence of the re-
ceptor. To fit and thread the mutated side-chains on the native
template, Scwrl4.0 [36] was used which samples the side-chain
conformations from the Dunbrack’s Rotamer library and has its
unique fast way of optimally removing steric clash. Subsequent
to fitting the mutated side-chains on the native main-chain co-
ordinates, side-chain coordinates of the unaltered amino acid
residues were retained from the original native structure
(6VW1, chain E). Existing polar hydrogen atoms generated
by Scwrl4.0 was subsequently trimmed and all hydrogen atoms
were rebuilt afresh by the program REDUCE (v.3.3) [37].
REDUCE geometrically builds hydrogen atoms on the existing
heavy atom coordinates by analyzing the local hydrogen bond
network, flips -CO and -NH2 groups in amidino groups of
asparagine, glutamine and takes care of resonating states of
histidine as appropriate to the given context. The rebuilt struc-
tures were then energy minimized by 500,000 steps of steepest
dissent and 50,000 steps of conjugate gradient method in
Gromacs and were subsequently undertaken for short (10 ns)
all atom molecular dynamic simulations (refer to the

“Molecular dynamic simulation (short and long)” section) as
a means to consider vibrational perturbation (or shake) due to
the performed multi-mutations on the native RBD. The short
simulations ensure necessary structural relaxation of the de-
signed binary PPI complexes (upon multi-mutations) by
allowing sufficient main- and side-chain flexibility. The de-
signed structures are hence released from being trapped in local
energy minima. The post-run time-evolved snapshots (after
10 ns) were taken as the final designed structures.

Scrambled sequences as negative control

To serve as negative controls, a pool of scrambled sequences
was constructed having an identical composition to that of the
presumably potential solutions obtained from the protein de-
sign results (i.e., its different variant protocols adapted). For
these sequences (hits), amino acid compositions were comput-
ed and grouped into six classes: C1. hydrophobic and
branched-chain (Ala, Val, Leu, Ile, Met), C2. hydrophobic
and aromatic (Phe, Tyr, Trp), C3. polar (Ser, Thr, Asn, Gln),
C4. positively charged (Lys, Arg, His), C5. negatively
charged (Asp, Glu), and C6. helix breaker and disulfide
forming (Gly, Pro, Cys). Compositions (in terms of percent-
age of each class) were averaged over the “hits” which served
as a compositional consensus. Randomly reshuffled se-
quences were then generated (hundreds of them) with identi-
cal compositions implementing the Fisher-Yates Shuffle algo-
rithm (http://www.programming-algorithms.net/article/
43676/Fisher-Yates-shuffle). These “scrambled” sequences
together served as potential negative controls to the
computational prediction (see the “Results and discussion”
section), as a means to physically verify and cross-validate
the importance of crucial and/or conserved amino acid posi-
tions in the native sequence (as in 6VW1, chain E) over and
above merely meeting the compositional criteria.

Contact map at the interface

Amino acid residues buried upon association/complexation
(i.e., interfacial residues) were identified by a net (non-zero)
change in their atomic solvent Accessible Surface Areas
(ASA’s) between their bound and free forms. In other words,
an interfacial residue is preconditioned by ΔASAresidue ≠ 0,
where, ΔASAresidue =∑ΔASAatoms_of_the_residue. ΔASA for each
ith atom in the residue was computed in the following way:

ΔASA ið Þ ¼ jASAbound ið Þ−ASAf ree ið Þj ð1Þ

where ASAbound(i) and ASAfree(i) refer to the ASA’s of each
ith atom of the same residue in its bound and free forms. The
interfacial atomic contacts were identified when any two
heavy atoms coming from two amino acid residues residing
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at each molecular interfacial surface were found within 4 Å of
each-other. A slight relaxation (4.5 Å) of this very stringent
cutoff was also attempted. This collection of residue-wise
atomic contacts served as the contact map at the receptor-
ligand interface—which were vividly and explicitly used as
one of the indicators to choose the mutations for the protein
design experiment. The same standard cutoff was also used to
identify salt-bridges [38, 39] at the receptor-ligand interface.

Shape and electrostatic complementarity

The semi-empirical function of shape correlation statistic (Sc)
as formulated by Lawrence and Colman [31] was adopted as a
mean to evaluate the Shape Complementarity of the binary PPI
complexes at their interface. The program Sc (version 2.0, ©
Michael Lawrence) attributed to the original paper was used to
serve the purpose. Implicit to this program, first, the molecular
(Connoly) surfaces [40] were constructed, sampled at 15
dots/Å2 for both interacting molecular partners separately.
The nearest neighboring dot surface points were identified
within a maximum distance of 3.5 Å and the following measure
(Sdp) computed for each pair of nearest neighboring dot points:

Sdp ¼ nA⋅nB:exp −w:d2
� �

; Sc ¼ median Sdp
�� ð2Þ

where nA and nB refer to the unit normal vectors, one
outwardly and the other inwardly oriented, corresponding to
the two dot points A and B coming from the two interfacial
molecular surfaces; d is their distance and w is a scaling con-
stant set to 0.5. Median of this distribution is taken as Sc.

Electrostatic Complementarity (EC) at the protein-protein
interfaces was adopted as originally prescribed by McCoy
et al., [32] wherein, the surface electrostatic potential was com-
puted for each interfacial protein surface twice, one time each
for the contribution of each partner molecule (taken as “target”
and “neighbor”). The surface electrostatic potentials were com-
puted by numerically solving the Poisson-Boltzmann equation
(using Delphi v8.4 [41]) implementing its finite difference
method, wherein, the protein dielectric was modeled as a
smooth Gaussian function of distance from its center of mass
[42]). This returns two troughs of potential values for each
interfacial surface and the negative of the Pearson’s correlation
is defined as the EC at each interfacial surface (see Eq. 3). The
average of the two ECs obtained for the two interfacial surfaces
(EC1, EC2) is taken as EC at the interface:

EC1;2 ¼ −
∑N

i¼1 Φ ið Þ−Φ
� �

: Φ0 ið Þ−Φ
0� �

∑N
i¼1 Φ ið Þ−Φ

� �2
:∑N

i¼1 Φ0 ið Þ−Φ
0� �2

0

B@

1

CA;EC ¼ EC1;2 þ EC2;1

� �
=2

ð3Þ

In the above equation (Eq. 3), if an interacting molecular
surface consisting of N dot surface points is taken as the “tar-
get” molecule (or object), Φ(i) represents the electrostatic po-
tential on its ith point realized due to its own atoms and Φ’(i),
due to the charged atoms of its molecular partner, taken as

“neighbor.” Φ and Φ0 are the mean potentials of Φ(i) and
Φ’(i), i = 1..N, respectively. EC1,2 may interchangeably repre-
sent both EC1,2 and EC2,1 with the necessary swapping of
“target” and “neighbor” and the corresponding potential terms
(Φ ↔ Φ’).

Force-field parameters (atomic partial charges and Van der
Waals radii) for the surface-bound carbohydrates (as in 6XR8)
were generated following the methodology reported in a re-
cent study on glycan shielding of the SARS-CoV-2 spike
protein [43] using the glycoprotein builder available at
GLYCAM-Web (www.glycam.org).

Both Sc and EC are essentially correlation measures rang-
ing from −1 (perfect anti-complementarity) to 1 (perfect com-
plementarity) having the same sense of directions (higher the
better). The non-rigid optimal ranges for Sc and EC can be
reasonably approximated as (0.55, 0.75) and (0.45, 0.65), re-
spectively, as has been found in protein (binary) complexes
coming from a wide variety of biological origins [31, 32].
Such a zone comprising of these ranges (optimal zone) can
be viewed analogous to the basin of attraction of optimal states
(attractors).

Complementarity Plot (CPint and CPdock)

Complementarity Plot [44–48] refers to a two-dimensional
plot of the ordered-pair values of shape and electrostatic
complementarities along its X and Y axes. The plot esti-
mates the probabilistic correctness of an experimentally
solved or a computationally built atomic model of a glob-
ular protein or a protein-protein complex, based on harmo-
ny of the embedded side-chains at their respective protein
environments with their local and non-local neighborhood.
The harmony with respect to the local and non-local neigh-
borhood is estimated in terms of shape and electrostatic
complementarity of buried and partially buried amino acid
residues. The complementarity plot has three variants. The
first two of them, namely, CP and CPint, are residue-wise
plots plotting the ordered-pair complementarity values
computed for buried or partially buried amino acid resi-
dues at the protein interior and interface, respectively.
The third variant, CPdock, was originally proposed as a
protein-protein docking scoring function [48] and is based
on the aforementioned single {Sc, EC} values obtained for
the whole protein-protein interface (see Fig. 1). In all the
three variant plots, the resultant points may be found locat-
ed to either of the three regions in the plots: “probable,”
“ less probable,” or “ improbable” based on their
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probabilistic feasibility to fit into a folded protein or a
protein (binary) complex model. Furthermore, as can be
revealed from Fig. 1, the “probable” and “less probable”
regions in CPdock (and those in the other variant CP’s) are
primarily covered (>85% area) by the first (+, +) quadrant
of the plot with Sc, EC both attaining positive values. Such
“both positive” points would thus render a higher probabi-
listic feasibility of two proteins to interact and this proba-
bility would increase with the closeness of the point from
the “probable” and/or “less probable” regions. Depending
on the requirement, both CPint and CPdock were used in the
study. CPdock was used for screening and scoring of the
protein complexes, while CPint was utilized for shortlisting
and identifying the amino acid residues at the interface to
be attempted for mutations in the protein-design pipeline.

Accessibility score

The accessibility score (rGb) compares the hydrophobic
burial profile (i.e., the distribution of amino acids as a
function of solvent exposure) of a globular protein or a
protein-protein complex with respect to corresponding
native distributions, enumerated from standard data-
bases. The score is also applicable to peptide fragments
or protein domains. The accessibility score is an integral
part of the structure validation protocol prescribed in the
Complementarity Plot [45, 46]. Mathematically, the
score is based on normalized conditional probability
(or propensity) estimates of residue types given their
burial (and hence the name: rGb) and can be formulated
as follows:

Fig. 1 The Complementarity Plots (CPint and CPdock). The composite
figure represents the two variants of the Complementarity Plot CPint
and CPdock. CPint (upper panel) is the residue-wise plot, plotting the
residue-wise complementarity estimates, Sm vs. Em [43] for interfacial
residues—which is further distributed into three sub-plots (CPint1,
CPint2, CPint3) based on their burial of solvent exposure (bur) of the
plotted residues. CPdock (lower panel) is for the whole interface {Sc, EC}.
The inner island colored in “purple,” the outer rim in “mauve,” and the
rest in “sky blue” corresponds to the “probable,” “less probable,” and

“improbable” regions of the plots. The pictorial demonstration is made
on the very structure of 6VW1 (i.e., the RBDSpike–ACE2 complex in
CoV-2) displayed at the right-bottom of the composite diagram. The
interfacial residues of the ligand (RBDSpike: cyan cartoon) which are in
physical contact with the receptor (ACE2: orange-yellow) are presented
as their van der Waal’s dot surfaces colored according to their corre-
sponding residences in CPint (“probable”: violet, “less probable”: magen-
ta, “improbable”: violet-purple)
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rGb ¼ 1

Nres
∑Nres

i¼1 log10 Prið Þ ð4Þ

where Nres is the sequence length of the input polypeptide
chain and Pri is the propensity of a particular amino acid (Val,
Asn, His, etc.) to acquire a particular degree of solvent exposure.

A value of rGb > 0.011 [45] (and higher the better) renders
the input atomic model affirmative with regard to the “native-
like” distribution of amino acids as a function of solvent expo-
sure while a value less than that means hydrophobic residues
are exposed to the solvent causing the molecule stay in an
unfavorable/frustrated disordered (high entropy) state. A nega-
tive value emphasizes this instability which may be extended to
explain the reaction-prone nature of the said fragment.

Fold recognition

Complementarity-based fold recognition measures (CSgl,
CScp) [44] were implemented to test the compatibility of the
designed sequences to the fold (i.e., main-chain trajectory) of
the RBDSpike. A (μ - 3σ)2 baseline on the complementarity
scores (CSgl:2.4, CScp:0.01) was set as a threshold value to
determine the compatibility of a designed sequence to the
given fold (μ, σ taken from the original reference).

Molecular dynamic simulation (short and long)

Molecular dynamic simulations were used in the study to serve a
twofold purpose. As described previously (refer to the “Protein
design: side-chain threading and shaking the designed binary
PPI complexes” section), the short simulations were run implicit
to the design protocol as a mean to incorporate vibrational per-
turbation to the in silico designed binary PPI complex. In con-
trast, long simulations were conducted to study the dynamics
and stability of the binding of the finally selected binary PPI
complexes (i.e., the proposed “optimal solutions”). In addition,
the native binary PPI complex (6VW1) was also undertaken in
the long MD simulation, as a mean to set baselines. In either
case, the same protocol was followed but for changing the du-
ration of the production phase. Explicit-water Molecular
Dynamics (MD) simulation was performed in GROMACS
v.2018.1 [49, 50] using the AMBER99SB-ILDN protein
force-field [51], TIP3P water model and “solvent” as the ion
replacing system associated with the MD package. Periodic
boundary conditions were used; solvation and charge neutrali-
zation of the proteinswere subsequently followed by two rounds
of energy minimization (500,000 steps of steepest descent
followed by 50,000 steps of conjugate gradient) using the in-
built PROMD module [50] within GROMOS96. The energy
minimized protein–solvent system was then equilibrated in an
NVT ensemble followed by an NPT ensemble for 100 ps and

5 ns, respectively. The initial temperature set for the NVT en-
semble was 100 K which was gradually raised to 300 K at
constant volume and was kept the same for the entire NPT
equilibration while the pressure being maintained at 1 bar. The
simulation systems were large, consisting of a total number of
246,148 (±10) atoms at an average. The production runs were
done in an NPT mode for 200 ns for the long MD simulation
runs (10 ns for the short ones) with a time-step of 2 fs for each
equilibrated protein–solvent system. The “cubic” simulation
boxes were built by considering an initial length of at least
13 Å from the surface of the protein binary complex (placed at
the center of the box) to each cubic face. This led to an average
box-dimension of ~135 Å × 135 Å × 135 Å of the simulated
solvated systems. To maintain constant temperature,
Berendsen’s temperature bathwas usedwith a coupling constant
of 2 ps, while barostat with a coupling constant of 1 ps was used
to regulate the constant pressure. The “LINCS” algorithm was
used to restrain bond-lengths for all bonds. For the short simu-
lation runs, the final snapshots (at 10 ns) were stored and used as
the final designed structures for scoring. For the long simulation
runs, trajectories were written at an interval of 2 ps, resulting in
100,000 frames (or time-stamps). Binding stability and other
related dynamical analyses were all performed on the post-
equilibrium 200 ns long trajectories (for the finally selected de-
signed protein binary PPI complexes). For each simulated
protein-complex trajectory, all post-simulation analyses were
done 2000 snapshots collected at 100 ps interval. This sampling
may be considered of sufficient resolution to capture the molec-
ular events under investigation.

Measuring the dynamic stability of the proposed
“optimal” solutions

To quantitatively assess the dynamic stability of the proposed
“optimal” solutions, CPdock was run on their whole dynamic tra-
jectory (i.e., on the selected collection of snapshots representing
the trajectory). Alongside analyzing the dynamic persistence of
the attained Sc, EC values individually, the ordered pair treatment
of {Sc, EC} was also invoked by estimating the distance of the
corresponding points in the plot from the “probable” region. To
that end, a 2D Euclidean distance measure (E2d) was formulated
based on a binary logic. If the {Sc, EC} point in the plot was
found to be located on a “probable” grid, then E2dwas set to zero.
Otherwise, E2d was computed as the 2D Euclidean grid distance
from the mid-point of the nearest edge belonging to the “proba-
ble” grid nearest to that point in the plot. It can be formally proven
that E2d is a metric in an R2 vector-space (proof not given).

Estimating changes in binding/interaction energies
for the proposed “optimal” solutions

As a mean to cross-validate the directed designs performed
based on the complementarity measures (Sc, EC), binding/2 μ: mean; σ: standard deviation
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interaction energies (ΔGbinding) of the native and the selected
designed protein complexes (i.e., the proposed “optimal” so-
lutions) were estimated along their 200 ns trajectories using
the standalone (C++with boost library) version (v.4) of FoldX
(http://foldxsuite.crg.eu/) [52, 53]. FoldX performs fast
computation of ΔGbinding/folding for proteins and PPI
complexes directly from their high-resolution 3D coordinates
(using full atomic description) and can efficiently be used to
probe the cumulative effect of multiple mutations in stability
of protein folds and/or protein-complexes from the corre-
sponding ΔΔG estimates [54, 55]. Its advanced empirical
force field includes van der Waals terms, solvent interaction
terms (both polar and hydrophobic), hydrogen bonds, electro-
static contribution to free energies, atomic steric overlaps as
well as the entropy cost for backbone and side-chain confor-
mational changes. It is particularly impressive for protein en-
gineering and stability analysis for its careful parameterization
of the energy terms using empirical data from actual protein
engineering experiments [52, 53].

To estimate the binding/interaction energies (ΔGbinding)
between the receptor and the ligand chains in the native and
a selected designed binary PPI complex (mimic), structural
snapshots were sampled at 100 ps interval from their corre-
sponding 200 nsMD simulation trajectories (resulting in 2000
time-stamps for each). Then, for each snapshot, FoldX was
run using the command AnalyseComplex with the
complexWithDNA parameter set to “false.” The resultant

ΔGbinding values obtained for the native ΔGnative
binding

� �
were

then subtracted from the corresponding values of the selected

designed mimic ΔGmimic
binding

� �
along their time evolution pro-

files to yield an equivalent time-evolved profile of their chang-

es ΔΔGmimic
binding

� �
due to the performed directed design (as

formulated in the following equation):

ΔΔGmimic
binding ið Þ ¼ ΔGmimic

binding ið Þ−ΔGnative
binding ið Þ ð5Þ

where i denotes the time-stamp in the corresponding time
evolution profiles.

Time-series averages and standard deviations were further
computed for all three parameters

ΔGnative
binding;ΔGmimic

binding;ΔΔGmimic
binding

� �
coupled with analyses

of the corresponding time-series plots.

Discriminating two population-distributions by ac-
counting for the deviations from an expected
distribution

Wherever applicable, χ2 tests following an N-bin model
(df3=N-1) were conducted to discriminate between two
population-distributions (say, native and non-native) with
the χ2-statistic being computed by the following equation:

χ2 ¼ ∑N
i¼1

E ið Þ−O ið Þð Þ2
E ið Þ ð6Þ

where E(i) represents the frequency “under the null hypoth-
esis” expected for the ith bin, while, O(i) denotes the actually
observed frequency for that same (ith) bin.

Buried surface area

Buried surface area (BSA) of a “target”molecular object is the
surface area of the object that gets buried on the neighboring
surface upon a binary association/complexation. This was
computed by taking the difference between the Accessible
Surface Areas (ASA’s) of the target in its free and bound
forms in the following way:

BSA ¼ ASAbound−ASAfree ð7Þ

where ASAbound and ASAfree refer to the ASA’s of the “tar-
get” when free (i.e., separated from the rest of the molecule/
complex), and when united/bound to the neighbor. Atoms at
the association/interaction-interface conditioned by ΔASA ≠ 0
were computed as in Eq. 1 of the “Contact map at the inter-
face” section.

Results and discussion

Molecular evolution of the SARS-CoV-2 RBDSpike:
reviewing key residues

SARS-CoV-2 has a high rate of transmission in human
[56–59] (though the fatality rate is low) while transmitting
only nominally within other close species (civet, rodents, fer-
rets, other primates, etc.). Evolutionary genomic studies have
revealed that the RBDSpike is the most variable part of the
corona virus genome [20, 60]. Furthermore, recent literature
on the proximal origin of SARS-CoV-2 [1] has highlighted
the essential effective difference between RBDSpike of CoV
and CoV-2 to be localized within a 51 amino acid stretch
(residues: 442–491 in CoV; 455–505 in CoV-2) on their (evo-
lutionarily mapped) ACE2 binding sites. Let this stretch be
henceforth referred to as the “Spike-RBD-hotspot.” A visual
structural examination revealed that the stretch primarily3 df: degree of freedom
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mapped to a long partially folded disordered loop with a small
anti-parallel β-strand embedded in it (see Supplementary Fig.
S2). The hotspot region includes six “critical” amino acid
positions that physically bind to the receptor out of which five
are mutated in CoV-2 with respect to CoV (Y442→ L455,
L472→ F486, N479→ Q493, D480→ S494, T487→
N501) [1]. The overall composition or physicochemical con-
sensus (in terms of hydrophobicity, charge, polarity, aroma-
ticity, amino acid volume, etc.) upon these evolutionary
changes remains almost unaltered in the two viral species.
The only noticeable effective difference is in the mutation of
one negatively charged amino acid to a polar residue (D480:
CoV→ S494: CoV-2). In a sense, the mutations collectively
appear to be a reshuffling of the overall discrete sequence
space (consisting of the aforementioned crucial positions).
So, based on the above hypothesis [1], it is quite surprising
that how this small, localized change could alone lead to such
an incredibly high increase in transmission rate in CoV-2 with
respect to that in CoV. To portray a more comprehensive
picture of the evolutionary event, the observation window
was broadened to the aligned full-length sequences of the
two homologous protein domains (RBDSpike). As a matter of
fact, the total number of point mutations between RBDSpike of
CoV and CoV-2 are found to be 17, 12 out of which have an
alternating hydrophobic character (i.e., polar/charged ↔ hy-
drophobic). Interestingly, all these mutations are situated
within the “Spike-RBD-hotspot” defined above.

Affinity and stability of binding from local and non-
local measures of complementarity

The coupling between the dual attributes of complementarity
is well known in biomolecular recognition, concerning shape
and electrostatic matching of the interacting molecular sur-
faces [44, 61–64]. It was also realized subsequently that shape
complementarity (Sc) is a necessary criterion for macro-
molecular binding while electrostatic complementarity (EC)
is sufficient [61, 65, 66]. For oligomer formation in proteins,
where large surface area (~1600 Å2) [67] are required to get
buried upon complexation, surfaces have to be carefully tai-
lored for the complementary interlocking of side-chains at the
interface. This close association between the interacting mo-
lecular partners enhances the effective match between their
protrusions and crevices so that extended areas can move into
close contact [31, 44, 68, 69]. A poor complementarity in
shape between two macro-molecular surfaces, therefore,
stands out to be a strong forbidding factor for their close as-
sociation. For example, two purely convex surfaces (say, two
spheroids or ellipsoids) lack the steric fit to bind.

On the other hand, complementarity in surface electrostatic
potential serves as a secondary criterion in macro-molecular
interactions, especially for proteins. The inter-relation of elec-
trostatic forces and protein stability is well known [62]. For

example, optimizing Coulomb interactions through charge sub-
stitution on the protein surface leads to increased stability
[70–73]. However, the same may not be achieved by a mere
non-strategic increase in the net charge (positive or negative) as
electrostatic repulsion may interfere within the folded state [70,
74, 75]. Along the same line, complementarity in surface
charge and/or net charge were ruled out as the representative
complementarity term in protein binary complexes [32] and
was corrected by redefining EC as the correlation in surface
electrostatic potentials. Sub-optimal EC values (even negative
values) have been found to result occasionally from unfavor-
able or repulsive interactions in protein complexes, also in
protein-ligand interactions [76], often compensated by strong
counterbalancing geometric fit [63]. Such instances have been
found in statistically considerable proportion (in ~20% of the
cases) in native protein-protein complexes [65], wherein, com-
pensatory elevated Sc values have frequently been recorded
[65]. Such obligate interactions4 are generally found to be tran-
sient in nature, often linked with signaling pathways [77–80].

The long- and short-range nature of the forces giving rise to
EC and Sc, respectively, leads to their corresponding stringent
and relaxed criteria. Accordingly, the height and width of the
“probable” regions vary in the complementarity plots (see Fig.
1). From this conceptual platform, it is quite logical to envis-
age shape complementarity (Sc) as an attractant factor in
macro-molecular interaction representing the mutual affinity
of the two molecular partners to engage into physical binding.
On the other hand, since adequate electrostatic matching at the
interaction-surface works favorably to stabilize the bound pro-
tein-complex, EC may plausibly be treated as the analogous
structural parameter representing binding stability.

Evolution of the CoV-2 RBDSpike–ACE2 interaction
dynamics

Based on the conceptual foundations discussed in the
“Affinity and stability of binding from local and non-local
measures of complementarity” section, the relative Sc and
EC values (see Table 1) computed for SARS-CoV (2AJF)
and SARS-CoV-2 (6VW1) were insightful. 2AJF has an Sc
of 0.417 with an EC of 0.185. Together, these values rational-
ize the binding, both numbers are appreciably positive, falling
in the “both-positive” (+, +) first quadrant of CPdock (refer to
the “Complementarity plot (CPint and CPdock)” section).
However, the ordered pair {Sc, EC} values also indicate that
the binding is sub-optimal with respect to their corresponding
reference ranges—which is clearly reflected from the location
of the corresponding point in CPdock (see Fig. 2). In more
elaborate terms, the point falls outside the optimal or near-
optimal zones, i.e., outside the “probable” and “less probable”

4 interactions required instantaneous/short-termed, e.g., those involved in sig-
nal transduction
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regions in the plot (refer to the “Complementarity plot (CPint
and CPdock)” section). In contrast, in 6VW1, Sc is found to be
0.555 (14% increase w.r.t. CoV) while EC is as low as 0.102
(~5% drop w.r.t. CoV). Again, both values are positive, the
resultant {Sc, EC} point in CPdock hits the first (+, +) quadrant
of the plot (see Fig. 2), thereby, rationalizing the binding (refer
to the “Complementarity plot (CPint and CPdock)” section).
Visual investigation of the two {Sc, EC} points from 2AJF
(CoV), 6VW1 (CoV-2) side-by-side on CPdock further re-
vealed their comparative interaction dynamics which is evo-
lutionarily insightful. Biochemical solution studies elsewhere
[21] had already confirmed that the RBDSpike has a signifi-
cantly greater affinity towards ACE2 relative to that in CoV.
The same is also reflected in their corresponding Sc values.
The 14% increase in Sc in CoV-2 relative to that in CoV
actually makes the Sc value hit its non-rigid optimal range
(refer to the “Shape and electrostatic complementarity”

section). As a result of this appreciably increased shape
matching, the RBDSpike in CoV-2 would have a much higher
affinity for ACE2 than that of CoV and would therefore be
attracted much faster to its cognate receptor. However, at the
same time, it renders a sub-optimal EC value (0.102) upon
interacting with ACE2. In elaborate terms, the receptor and
the ligand contact-surfaces share just 10% match between their
surface electrostatic potentials coming from the electric fields
of their own and that of their partner’s (see Fig. 3). By definition
(refer to the “Shape and electrostatic complementarity” sec-
tion), this means weak anti-correlation in surface potentials at
the interface, as the close association of two perfectly anti-
correlated electrostatic surfaces would ideally return a value
of EC = 1 [32]. Hence, yet being attracted to ACE2 faster than
that in CoV, the RBDSpike in CoV-2 would also get released
from the receptor faster as the unfavorable electrostatic interac-
tions would act against a stable binding. The lower stability in

Table 1 Comparison of the complementary estimates of the homologous RBDSpike bound binary PPI complexes

PDB ID SPIKE RBD source Strain ACE2 Sc EC CSl Pcount Nlsp Nimp

3D0G 2002–2003 SARS-CoV Human Human-civet chimeric 0.168 −0.648 −6.56 58.3 0 4

3D0H 2002–2003 SARS-CoV Civet* Human-civet chimeric 0.211 −0.445 −1.92 47.1 2 5

3SCL SARS-CoV Epidemic Human-civet chimeric 0.382 0.034 1.18 22.9 6 5

3SCJ Predicted SARS-CoV Civet Human 0.523 0.301 1.45 20.0 7 0

2AJF SARS-CoV Human Human 0.417 0.185 1.09 23.5 5 3

6VW1 SARS-COV-2
COVID-19

Chimeric Human 0.555 0.102 1.15 14.7 5 3

In the table, Pcount refers to the percentage of interfacial residues falling in the “improbable” regions of the plot. Nlsp and Nimp refer to numbers of
interfacial residues falling, respectively, in the “less probable” and “improbable” regions of the residue-wise Complementarity Plot (CPint; see the
“Complementarity Plot (CPint and CPdock)” section)

*Paguma larvata

Fig. 2 The dynamics of RBDSpike–ACE2 binding from complementarity
estimates. The left panel of the figure shows the superposed RBDSpike–
ACE2 binary complexes from the homologs (see the “Evolution of the
CoV-2 RBDSpike–ACE2 interaction dynamics” section) in cartoon

covered with mesh representation. The receptors and the ligands are
colored in green and magenta, respectively. The right panel shows the
mapping of their corresponding {Sc, EC} points in CPdock as per
mentioned in the embedded legend
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the ACE2-bound binary PPI complex in CoV-2 relative to that
in CoV can also be cross-validated by comparing the
“dG_separated” values for both, computed by structure driven
thermodynamic calculations using Rosetta [23]. Interestingly,
in spite of the sub-optimal EC, the increase in Sc in CoV-2
relative to CoV results in a right-shift along the horizontal axis
of the corresponding resultant point (CoV-2) in CPdock making
the point map to the near optimal zone (~ “less probable” re-
gion). Overall, the RBDSpike–ACE2 interaction in CoV-2 does
appear to have a quasi-stable character in spite of having a high
affinity. At the same time, it is also interesting to reveal that a
disease with such a high rate of transmission is actually trig-
gered by a quasi-stable interaction—which may potentially in-
stigate parallel research endeavors to further explore the phe-
nomenon at more complex molecular hierarchies.

In order to carry out a comparison among the available
homologs, Sc, EC were computed for all six RBDSpike–
ACE2 binary complexes (refer to the “Details of experimental
structures used in the study” section) and were plotted togeth-
er in CPdock. Both Sc and EC hit values in their corresponding
sub-optimal to near-optimal ranges (see the “Shape and

electrostatic complementarity” section) making the corre-
sponding points scattered around the “improbable” and “less
probable” regions of CPdock. Noticeably, the civet strain, 3SCJ
has the closest approach (see Fig. 2) to optimality (see the
“Shape and electrostatic complementarity” section) in terms
of the combined {Sc, EC} ordered pair, corresponding to its
relative closeness from the “probable” region of CPdock (com-
pared to the other candidates in the set). Interestingly, the {Sc,
EC} points corresponding to all the homologs was found to
cluster around the left-bottom (south west) of the “probable”
(optimal) region in CPdock (see Fig. 2b). Such a distribution of
points in CPdock is indicative of sub-optimal quasi-stable bind-
ing of the two molecular partners along evolution. This was
also prominent from a structural display of the molecular in-
terface (see Fig. 2a). For instance, there were no deep grooves
or any binding pockets on the receptor where the ligand may
stably fit with high affinity. Neither there were signs of any
conformation-induced knotting upon binding nor other
known/intuitive structural models that might map to “high
affinity stable binding.” Rather, the binding appears to be
reminiscent of a “molecular handshake” [82] rather than a

Fig. 3 Electrostatic surface of the native RBDSpike–ACE2 binary
complex. a and b Map the electrostatic potential surface of the ligand
due to the electric fields coming from the ligand itself (self) and the
receptor (partner), respectively. Likewise, c and d map the electrostatic
surface of the receptor due to the electric fields coming from the receptor
(self) and the ligand (partner), respectively. Atomic coordinates of the
RBDSpike–ACE2 binary complex are taken from PDB ID: 6VW1. In each
panel, the thick arrows indicate whether the surface potentials are due to
“self” (a, c) or “partner” (b, d). Further, in each panel, the molecular
partner represented as “cartoon” is colored “yellow,” if it is contributing
to the potential (i.e., in case of partner-potentials), and, “dim gray” oth-
erwise (self-potentials). The electrostatic surface coloring was done in

Chimera [81] using Delphi [41] electrostatic focusing files (.cube) with
a color scale set to −10 kT/e for “pure blue” to +10 kT/e for “pure red.”As
can be seen, there is very little match of counter-colors (red and blue’s)
between corresponding patches on both “contact surfaces” (ligand and
receptor) due their respective self- and partner-potentials—which means
weak anti-correlation due to unfavorable electrostatic interactions. The
potential values portrayed in a and b yields EC1,2 = 0.055 while those
portrayed in c and d yields EC2,1 = 0.149 (where, 1 and 2 in the subscripts
of EC refer to the ligand and the receptor, respectively) together leading to
EC = 0.102 (see Eq. 2 and the “Comparative stability of the RBDSpike

conformers influencing their switch” section)
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molecular hug or cling, both from CPdock and from the corre-
sponding structural displays. It is also noteworthy that the part
of the “ACE2 peptidase domain (PD)” that physically binds to
RBDSpike is actually a single α-helix, known as the “ACE2
PD α1 helix.” The same relative trends among the homolo-
gous structures (see Table 1) are also naturally reflected from
CP-based global (Complementarity score, CSl) and local mea-
sures [45, 46].

Comparison with equivalent protein complexes from
MERS and Ebola

As a point of reference, equivalent protein (binary) complexes
from other deadly viral diseases in human were surveyed in a
likewise manner. MERS (PDB ID: 4L72) CoV RBD, when
bound to its human-receptor Dipeptyl transferase (DPP4) had
substantially better shape fit and electrostatic matching along
extended mutually compatible surfaces (see Fig. 4, upper
panels). On the other hand, the Ebola Viral Glycoprotein,

bound to its endosomal receptor Niemann-Pick C1, displayed
signatures of knotting upon binding induced conformational
changes naturally having far greater surface fit coupled with
optimal electrostatic matching (see Fig. 4, lower panels).

Comparative stability of the RBDSpike conformers
influencing their switch

As discussed in the “Introduction” section, pioneering EM
studies [15] have revealed a “surprisingly low kinetic barrier”
for the conformational transition between the pre- and post-
fusion forms of the Spike protein. The key mediator of this
conformational transition is the RBDSpike domain which,
when proximal to the ACE2 expressing lung cells, switches
from its native “down” (RBDdown) to active “up” (RBDup)
forms primed by a conformation dependent proteolytic cleav-
age. This cleavage along with the conformational switch, to-
gether, set the RBDSpike free and enable it to bind to ACE2
concomitantly. Intuitively, the RBDdown is structurally

Fig. 4 Analogous binary PPI complexes of SARS-CoV-2-RBDSpike–
ACE2 in MERS and Ebola : dynamics o f b ind ing f rom
complementarity. The upper and lower panels of the figure represent

the binary complexes in MERS (PDB ID: 4L72) and Ebola (PDB ID:
5F1B), respectively, their structures on the left and the corresponding
mapping of their {Sc, EC} points in CPdock on the right
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preferred over RBDup as the “down” state is also known to be
functionally coupled to its ability to escape the host immune
surveillance. To that end, we carried out a comparison based
on the proposed complementarity measures (Sc, EC) comput-
ed independently on RBDdown and RBDup (as “target” ob-
jects) with respect to their respective (local, global) neighbor-
hoods in order to reveal if the said preference (RBDdown over
RBDup) can indeed be portrayed from the relative numbers. In
addition, surface area buried upon association (BSA, see the
“Buried surface area” section) for both forms (RBDdown,
RBDup) was also considered as a third measure of compari-
son. Thus, essentially, we surveyed to which of its two sur-
rounding neighborhoods ((i) as embedded within the native
Spike or (ii) as in complex with ACE2) does the RBDSpike (as
the “target”molecular object) feel more harmonious. Notably,
binding and folding in proteins can be treated equivalently
based on the concept of complementarity [44], wherein, fold-
ing can be envisaged as the self-docking of the interior com-
ponents of a protein-chain/domain onto their respective native
environments, consistent with short- and long-range forces
sustaining the native fold. To that end, the trimeric RBDdown

was contemplated to have self-docked onto the rest of the
(native) Spike protein.

The full-length Spike protein in its native pre-fusion form is
a biological trimer (PDB ID: 6XR8, bio-assembly-1). Thus,
structurally, RBDdown is actually an assemblage of three
symmetry-related RBDSpike (down) units while they remain
integral to the Spike protein, serving as its limbs. On the other
hand, RBDup refers to the post-cleavage S1 fragment(s)
entrapped as the ligand chain(s) in the RBDSpike–ACE2 binary
complex, which again is a biological monomer (6VW1, two
bio-assemblies, both monomeric). The proposed mechanism
for the viral host cell entry [15] also clearly portrays this “tri-
meric → monomeric” switch of the RBDSpike (RBDdown →
RBDup) upon binding to ACE2. Thus, as would be appropri-
ate, RBDdown was taken as the trimeric association of the
RBDSpike (down) units embedded in the full-length Spike pro-
tein (6XR8) while its neighborhood consisted of the “rest of
the Spike protein” (barring the RBDdown). On the other hand,
RBDup was retained (as throughout the paper) as the ligand
(E) chain in 6VW1 with the receptor (A chain) ACE2 serving
as its neighborhood. The three following calculations were
then performed:

(i) EC for RBDdown in native Spike (ECRBD_down) was com-
puted (from 6XR8), and compared with the equivalent
measure (ECRBD_up, referred to as EC1,2 in Fig. 3) already
computed for RBDup (referred to as the “ligand” in
6VW1: see the “Evolution of the CoV-2 RBDSpike–
ACE2 interaction dynamics” section). For ECRBD_down,
RBDdown served as the “target” (refer to the “Shape and
electrostatic complementarity” section) while the “rest of
the Spike protein” served as its global neighborhood.

(ii) Likewise, Sc for RBDdown (target) in native Spike
(ScRBD_down) was computed (from 6XR8), and com-
pared with the equivalent measure (ScRBD_up) already
computed for RBDup (refer to the “Evolution of the
CoV-2 RBDSpike–ACE2 interaction dynamics” section).
Likewise to that of ECRBD_up, RBDdown also served as
the “target” for computing ScRBD_down while its local
neighborhood was sampled from the “rest of the Spike
protein”. To that end, the local neighborhood of
RBDdown was delineated by collecting those residues
(from the “rest of the Spike protein”) which were found
within a relaxed Cα-Cα cut-off of 12 Å from any residue
in RBDdown (see Supplementary Fig. S3). The calcula-
tion was also repeated at a 15-Å cut-off which returned
the same ScRBD_down. The over-relaxed cut-offs ensured
not to miss out any potential neighboring atoms, while,
at the same time, helped to speed up the calculations.

(iii) BSA was computed (see the “Buried surface area” sec-
t ion) for RBDdown ( target ) in nat ive Spike
(BSARBD_down), and compared with that of RBDup

(target) in complex with ACE2 (BSARBD_up).

The expected preference for “down” over “up” forms in
RBDSpike was reflected from all three measures (EC, Sc,
BSA) (see Supplementary Table S1). Although the
ECRBD_Down (referred to as EC1,2 in Supplementary Fig. S4)
was fairly low (0.254), the correlation is over 16,847 points (p
value <0.00001; significant at p < 0.01) and the value is 4.5
times more than that of ECRBD_Up (0.055) computed over 762
points (p value, 0.129293; not significant even at p < 0.1).
ECRBD_Up is the same measure referred to as EC1,2 in Fig. 3
(where RBDUp is referred to as the “ligand”). The correspond-
ing shape complementarities also followed a similar trend
(ScRBD_Down = 0.617; ScRBD_Up = 0.566), though, as expected
(refer to the “Affinity and stability of binding from local and
non-local measures of complementarity” and “Evolution of the
CoV-2 RBDSpike–ACE2 interaction dynamics” sections), the
difference was nominal. The preference is perhaps most pro-
nounced and direct from the corresponding BSA values.While,
in the native Spike (6XR8), BSARBD_down amounts to
6306.1 Å2 over 1538 atoms at the interface (ΔASA ≠ 0, see
the “Buried surface area” section), BSARBD_up reduced to
875.3 Å2 over 189 interfacial atoms in the ACE2-bound com-
plex (6VW1). Thus, both the relative BSA and the relative
number of atoms buried upon association/complexation are
more than 7 to 8 times higher in RBDdown (in “Spike native”)
to that of RBDup in complex with ACE2. So, it is clear and
unmistakable from all three measures that RBDSpike indeed
prefers to stay in the passive “down” state till it reaches the
primary site of infection, while, switching over to its more
active “up” state only when proximal and exposed to the
ACE2 receptors. This structural preference of RBDSpike (for
“down” over “up”), in effect, serves to aid as a “transient”
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molecular switch to trigger the membrane fusion and host cell
entry of the virus. The fact that such transitions are energetically
costly and are therefore expected to be kinetically driven per-
fectly aligns with the finding of the dissociated cleaved S1/S2
complex in absence of ACE2 and the adopted post-fusion con-
former of the S2 fragment under (membrane mimicking) mild
detergent conditions, which together reveals the “surprisingly
low kinetic barrier” for the conformational transition [15].

Reaction-prone nature of the ACE2 binding site in
SARS-CoV-2 RBDSpike

As elaborated in the above sections, when compared with anal-
ogous ligand-receptor binary PPI complexes from related viral
strains in the human host, the RBDSpike–ACE2 interface in
SARS-CoV-2 does appear to be different and rare. All analyses
unequivocally indicate that the interface maps to protein binary
complexes involving transient interactions [79] which is likely to
be causally linked to its presumably uniquemodus operandi. To
cross-validate this observation, other independent approaches
were also adopted concerning the study of the interface. This
included (i) calculation of the accessibility score (rGb) of the
binary PPI complex and different relevant molecular fragments,
and (ii) a detailed analysis of the contact map at the interface. As
a matter of interest, 6VW1 (i.e., the only representative interface
structure from CoV-2) alone was chosen for the analyses.

As detailed in the “Materials and methods” section (see the
“Accessibility score” section), a value of rGb greater than
0.011 (and higher the better) qualifies a globular protein/
protein complex/peptide fragment/protein domain to be con-
sidered native-like in terms of hydrophobic burial or the dis-
tribution of amino acid residues with respect to solvent expo-
sure. Any value less than this empirical threshold renders the
input protein molecule non-native like which physically
means that hydrophobic residues are exposed to the solvent.
This would cause the molecule to stay in an unfavorable/
frustrated disordered (high entropy) state. A negative value
virtually guarantees this instability which may be extended
to depict a reaction-prone nature of the said protein fragment.

With this understanding, rGbwas computed for the (i) whole
native protein binary complex (referred to as 6VW1_AE in
Table 2) and its different relevant molecular fragments, namely,
(ii) the ligand chain (chain E of 6VW1) or the RBDSpike alone
(6VW1_E in Table 2), (iii) the “Spike-RBD-hotspot” (residues
455–505, refer to the “Molecular evolution of the SARS-CoV-2
RBDSpike: reviewing key residues” section) where all key mu-
tations are localized (6VW1_E_hotspot in Table 2), and (iv) the
actual ACE2 binding site or the collection of mapped interfacial
residues on chain E as found in the contact map (6VW1_E_bs
in Table 2). Interestingly, the rGb scores were found to be
decreasing in large fractions from (i) 6VW1_AE to (iv)
6VW1_AE_bs following the descending order of size of the
input protein fragment. The relative numbers clearly indicate
that the binary PPI complex has the most optimum (or native-
like) distribution of hydrophobic burial (rGb 0.052, see Table 2)
in the whole set which is substantially better than the ligand
chain alone (rGb 0.028). The high negative value (rGb
−0.055) obtained for 6VW1_E_bs speaks for its high
reaction-proneness [83]. In other words, the high degree of un-
favorable hydrophobic exposure makes the ACE2 binding site
in RBDSpike critically scurried or strained in its free state. Thus,
it is always in a crisis need to embed itself within a befitting
complementary surface of an appropriate binding partner.

For another level of cross-checking, the contact map at the
interface (see the “Contact map at the interface” section) was
also rigorously scrutinized. The interface was large with an
accessible surface area buried upon complexation (ΔASA) of
1644.4 Å2 considering both molecular partners. It involved 23
inter-residue contacts between the residues coming from the
two molecular partners totaling 96 pairwise atomic contacts
between their side-chain atoms. The interface appears to have
many rare interesting features. From the rGb calculations stat-
ed above, it was already clear that the RBDSpike interfacial
surface had several exposed hydrophobic residues; hence, it
is perhaps of no surprise that the contact map consisted of
several hydrophobic residues coming from the ligand
(RBDSpike). Interestingly enough, most of these hydrophobic
residues were found to be in contact with hydrophilic residues
coming from the receptor. Furthermore, a large majority of
these hydrophobic residues were in fact bulky aromatic amino
acids (see Supplementary Table S2). They were mostly found
to be in contact with either “elongated positively charged”
(Lys) or “aromatic yet polar amino acids” (His) coming from
the receptor. The corresponding interactions mapped to close
hydrophobic packing between extended chains of successive
mythelene groups (-(-CH2)4) of the lysine(s) and the aromatic
ring (31-Lys-A–489-Tyr-E, 353-Lys-A–505-Tyr-E) (see
Fig. 5a, b). There were also instances of polar interactions
involving aromatic components (34-His-A–453-Tyr-E) (see
Fig. 5d), although, there were no clear signatures of any
cation–Π or Π-Π stacking between the charged residues and
the aromatic rings. However, there were instances of regular

Table 2 Reaction proneness of the ACE2 binding site on RBDSpike

surveyed by the accessibility (rGb) score

Input protein fragment rGb

6VW1_AE 0.052

6VW1_E 0.028

6VW1_E_hotspot 0.019

6VW1_E_bs −0.055
Threshold for native-like features 0.011

Description of the input protein fragments are as detailed in the
“Reaction-prone nature of the ACE2 binding site in SARS-CoV-2
RBDSpike” section
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aromatic stacking with a slide and an open angle separating
the otherwise-parallel aromatic rings (83-Tyr-A–486-Phe-E)
(see Fig. 5e). Also, there were hydrophobic packing (79-Leu-
A–486-Phe-E, 34-His-A–455-Leu-E) and electrostatic inter-
actions involving polar atoms (24-Gln-A–487-Asn-E, 42-
Gln-A–498-Gln-E, 34-His-A–493-Gln-E) (see Fig. 5f).
Interestingly, there was a salt-bridge (31-Lys-A–484-Glu-E)
as well at the interface (see Fig. 5c) whose presence may be
further destabilizing due to desolvation effects—as has been
found for salt-bridges in general at protein-interfaces [32, 38,
84]. Overall, it genuinely appears that the interface high po-
tential to harbor and withstand unfavorable electrostatic
interactions—which may be causal to the resultant sub-
optimal electrostatic complementarity (EC = 0.102).

Inherent evolutionary features of RBDSpike naturally
aiding the design of its structural mimics

The primary objective of the current study was to develop
non-virulent structural mimics of the RBDSpike that could bind

to the ACE2 receptor stably with high affinity. For conve-
nience, let these binary PPI complexes be henceforth referred
to as “ACE2-complexes” pertaining to the corresponding
RBDSpike-ligands (native and designed). These designed
mimics would thus serve as potential competitive inhibitors
of the viral RBDSpike by occupying the binding sites on the
ACE2 receptors. To that end, a protein design approach was
adopted aiming to raise the EC of the designed ACE2-
complexes (from their sub-optimal native reference value:
EC6VW1 = 0.102) while retaining or raising Sc at or from its
already near-optimal range (Sc6VW1 = 0.555). The conceptual
foundations of the “plausibility of the design strategy” relied
on a twofold fact. Firstly, the RBDSpike is an independently
foldable domain which is self-sustained as a protein unit and
can undergo folding independent to that of the rest of the
Spike protein [21]. Secondly, the RBDSpike is resilient to con-
formational changes upon multi mutations, as has been evi-
dent from structural analyses (refer to the “Evolution of the
CoV-2 RBDSpike–ACE2 interaction dynamics” section) of the
homologs. This means that the basic fold in RBDSpike remains

Fig. 5 The RBDSpike–ACE2
interface in SARS-CoV-2: non-
trivial interactions. a and b
Extended packing between aro-
matic rings and consecutively
connected mythelene groups of
elongated charged amino acids. c
The only salt-bridge found at the
interface. d and f Instances of po-
lar atom-mediated interactions
involving an aromatic ring while e
presents aromatic stacking with a
slide and an open angle. Atomic
coordinates of the RBDSpike–
ACE2 binary complex are taken
from PDB ID: 6VW1
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unaltered in spite of the evolutionary sequence variations. The
pairwise sequence similarity of the CoV RBDSpike sequences
with respect to 6VW1 (CoV-2) was found to be ~69%. RMS
deviations (Cα) upon superposing the CoV RBDSpike–ACE2
structures (refer to the “Details of experimental structures used
in the study” section) onto 6VW1 were found varying from
1.29 Å (for 3SCL) to 3.18 Å (for 3D0G) (see Supplementary
Fig. S5). Furthermore, there were virtually no conformational
changes of the RBDSpike upon binding to the ACE2 receptor
with respect to its structure in free form (6VXX). RMS devi-
ation (Cα) upon superposing the RBDSpike from 6VW1 onto
the free and full structure of the Spike protein (6VXX) was
0.893 Å. Together this means that one may simply administer
the finally selected designed mimics without having to bother
about their folding (ab-initio) as long as their sequences fit the
fold. Test of this fitness with the given fold (i.e., fold compat-
ibility) of the designed sequences was made by state-of-the-
art scoring functions for fold recognition (refer to the “Fold
recognition” section).

The protein design strategy: sampling and scoring

As mentioned in several earlier sections, a protein-design ap-
proach was adopted aiming to develop non-reactive structural
mimics of the RBDSpike which may serve as potential compet-
itive inhibitors of the native viral Spike protein to act against
the viral pathogenicity. As was found out, the interacting sur-
faces of CoV-2 RBDSpike and ACE2 has a high shape fit (Sc:
0.555) mapping to its optimal range (refer to the “Shape and
electrostatic complementarity” section) coupled with a sub-
optimal electrostatic matching at the interface (EC: 0.102).
Together, these may be interpreted in terms of having a high
affinity yet with a low stability upon binding. Aligned obser-
vations have also been proclaimed by biochemical solution
assays [21] and calculation of structure based thermodynamic
parameters [23] carried out in other studies. This quasi-stable
nature of the binding potentially triggers a fast-release of the
ligand from the receptor, making them amenable to interact
with a greater number of cells having surface-exposed ACE2
receptors. So, the primary objective in the designed RBDSpike

mimics was to increase the EC at the interface which would
make the interaction more stable. Combining the shape affin-
ity factor, the design problem aimed to improve EC while
retaining Sc at least native-like in that “near-optimal to opti-
mal” range. Experimental structural studies in an aligned di-
rection have already demonstrated the favorable effect of key
residue substitutions performed across the whole C-terminal
domain of the CoV-2 Spike protein harboring the RBDSpike

(see Supplementary Fig. 1). Such key-substitutions have been
found to strengthen the RBDSpike–ACE2 interaction leading
to a 4-fold increased affinity for receptor binding than that of
the native ACE2-complex (see the “Inherent evolutionary fea-
tures of RBDSpike naturally aiding the design of its structural

mimics” section) [24]. For our purpose, we had chosen to
operate on the RBDSpike itself. When the native binary PPI
complexes from the homologs (refer to the “Details of exper-
imental structures used in the study” section) were superposed
onto 6VW1, the average pairwise Cα-RMS deviation was
found to be 2.05 Å. This evolutionary structural conservation
meant that mutations at the ligand (RBDSpike) interface can
directly be performed on the native ACE2-complex (6VW1)
itself. In a sense, the bound binary PPI complexes were treated
like unified globular proteins, wherein, the design protocol
may be considered analogous to performing a “hydrophobic
core design” or a “full sequence design” in globular proteins.
Any protein design protocol has two essential steps: (i) sam-
pling and (ii) scoring. For the current study, sampling (i.e.,
incorporating strategic mutations) was attempted by essential-
ly two approaches, consistent with the main objective of rais-
ing the ECwhile retaining an at least native-like Sc. In the first
of the two approaches, attempts were made to alter the hydro-
phobic character of the amino acid residues at the interface
while keeping their shape and size as similar as possible.
Intuitively, this could alter and possibly raise the EC while
keeping Sc similar. An equivalent strategy, earlier, was found
fruitful in incorporating unbalanced partial charges into native
globular protein interiors and detecting the local “electrostat-
ic” errors in-turn [45]. In the second approach, homologous
sequences (i.e., direct examples from nature) that were already
found to hit appreciably higher EC values were threaded on
the native RBDSpike template in 6VW1. Strategic mutations
were performed on this threaded homologous sequence based
on the contact map at the interface. All mutations in the afore-
mentioned two approaches were performed on the ligandmol-
ecule alone retaining the receptor as it is. Scoring and raking
of the binary PPI complexes were primarily based on the
complementarity measures (refer to the “Shape and electro-
static complementarity” and “Complementarity plot (CPint
and CPdock)” sections). Fitness or compatibility of each de-
signed sequence with respect to the native fold was tested by
fold recognition measures also based on complementarity (re-
fer to the “Accessibility score” section).

Design strategy-1: altering the hydrophobic character
of the amino acids

First, from the distribution of interfacial amino acid residues
of the ligand chain (6VW1_E) in the residue-wise
Complementarity Plots (CPint), residues falling in the “less-
probable” and “improbable” regions (see Fig. 1) were accu-
mulated. They were then united with critical residue positions
on the ACE2 binding site (the “Spike-RBD-hotspot,” residues
455–505: see the “Molecular evolution of the SARS-CoV-2
RBDSpike: reviewing key residues” section) said to be harbor-
ing determining evolutionary mutations [1]. The full set (S1)
consisted of 11 amino acids in total (see Supplementary
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Table S2) and but for the case of 417-Val the rest of the
residues were covered within the aforementioned “hotspot”
region. Out of the 11 amino acids selected, four were bulky
aromatics, three branched chain hydrophobic, and the rest
polar. As a first trial (strategy-1a), mutations were made in
this set of 11 residues alone. The raw combinatorial space
considering all possible amino-acid mutations is of the astro-
nomical order. To curtail it down to the limits of finite sam-
pling, ad-hoc filters involving semi-empirical rules of thumb
(detailed as follows) were judiciously incorporated. Each de-
signed sequence was unique as the sampling involved random
seeds. Coupled with the random seeds a weighting scheme
was further adopted. For 50% of cases, the amino acids were
mutated to (i) residues with alternating hydrophobic character
and/or structural properties (S↔S, A↔S, V↔T, L↔N,
F↔Y, L↔D, I↔M, M↔R, E↔R, E↔Q, D↔N, R↔M,
R↔E, etc.: antonymous changes) and for the other 50%, to
(ii) amino acids with similar properties (G↔P, V↔L, F↔W,
K↔R, E↔D, Q↔N, H↔Y, S↔T, etc.: synonymous chang-
es). Care was taken to retain their size and/or shape as much as
possible. This 1:1 ratio of weights was further varied from 2:1
to 1:1. The intent was to raise the residue-wise electrostatic
complementarity (Em) of amino acids falling into the “improb-
able”/“less probable” regions of CPint in such extents that they
can make it to the “probable” regions. It was subsequently
realized that electrostatic matching is essentially a global ef-
fect and need not necessarily affect the mutated residue itself.
Hence, in an alternative approach (strategy-1b), the contact
map of the interface was surveyed (refer to the “Contact
map at the interface” section) and the ligand residues involved
in this set (S2: 13 of them) were chosen as the target positions
(see Supplementary Table S2) to perform the mutations

keeping the same sampling strategy. There was appreciable
overlap (~46%) between the two sets, S1 and S2.

For each of the two aforementioned strategies (1a and 1b)
50 redesigned sequences were constructed and tested in
CPdock. Each individual case was carefully scrutinized with
visual intervention at all stages of the design protocol. When
plotted in CPdock, they were fairly closely spaced creating a
south-west island (see Fig. 6a) relative to the center of the
optimal zone in CPdock (i.e., the “probable” region). The
points were more closely clustered for the first set (strategy-
1a) relative to the second (strategy-1b) in terms of both com-
plementarity measures: Sc, EC as reflected in their corre-
sponding range of obtained values (Set-1a: [0.394, 0.544] in
Sc, [0.113, 0.298] in EC; Set-1b: [0.514, 0.733] in Sc, [0.042,
0.314] in EC for strategies 1a and 1b, respectively).

In spite of being more closely clustered, Set-1a mapped to
values further away from the optimal zone relative to Set-1b.
On the other hand, Set-1b appeared to have a greater chance of
returning false positive points falling in the “improbable” re-
gions (sub-optimal zones) of the plot (see Fig. 6b). The top 25
sequences from each set were then filtered based on their
residence in CPdock (relative to the optimal zone). All filtered
sequences successfully passed the test for fold-compatibility
(averages 2.76 ± 0.17 in CSgl; 0.016 ± 0.0001 in CScp). These
sequences were more closely spaced in CPdock relative to the
corresponding original sets. Set-1b mapped more into the
“probable”/“less probable” regions (i.e., optimal/near-
optimal zone) relative to Set-1a, though, with a greater num-
ber of false-positives (see Fig. 6a, b). To serve as negative
controls, “scrambled” sequences (refer to the “Scrambled se-
quences as negative control” section) were generated for each
set by random reshuffling of the designed sequences and

Fig. 6 The solution space: from alteration of hydrophobic character to
homology-based design. a, b, and c The solution space for strategies 1a,
1b, and 2, respectively (as referred in sections “Design strategy-1: altering
the hydrophobic character of the amino acids” and “Design strategy-2:

homology-based protein design: taking templates from nature itself”).
The red dots represent the {Sc, EC} points obtained for the corresponding
scrambled sequences
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plotted alongside the “hits” in the two sets (1a and 1b). Clear
discriminatory clusters were obtained for the “hits” and the
“scrambled” sequences (refer to the “Scrambled sequences
as negative control” section) with virtually no overlap (see
Fig. 6). All points in the corresponding “random” clusters
(the “red dots” in Fig. 6) representing the scrambled sequences
were found at the “improbable” regions of the plot, indicating
that they were unambiguously sub-optimal.

Design strategy-2: homology-based protein design: taking
templates from nature itself

In several well-posed hard-to-solve bioinformatics problems, di-
rect adoption of empirical natural strategies [85–88] coupledwith
trial-and-error modulations has found much scope and penetra-
tion. This includes the very problem of protein structure predic-
tion (considered to be the “holy grail of structural biology”) or
other related sub-problems emerging from the core of the protein
folding problem (e.g., fold recognition [44], protein design [89],
etc.). The “fragment assembly simulated annealing” strategy [87,
90] as in Rosetta is based on natural examples—which is argu-
ably the best structure prediction methodology till date. With the
same intuition, we also attempted the direct use of empirical
natural examples in our design pipeline, as an alternative to
changing the hydrophobic character of amino acids at the inter-
face (strategy-1, a and b). In that line, we picked up the RBDSpike

sequence from 3SCJ (i.e., the civet strain from predicted SARS-
CoV; see Table 1) motivated by its complementarity estimates
(Sc: 0.523, EC: 0.301)—together which stood out to be the best
among the homologous. Consequently, 3SCJ also had the closest
approach to the “probable” region of CPdock (see Fig. 2) relative
to the other homologous, which is to say the closest to being an
optimal solution. The sequence of 3SCJ and 6VW1 were
aligned, and the aligned 3SCJ sequence (target) was directly
threaded onto the main-chain trajectory of the ligand in 6VW1
(template). The threading protocol followed three simple rules of
thumb. (R1) For a deletion in the target sequence with respect to
the template, the template amino acid was incorporated to fill the
gap. (R2) In case of substitution(s), the obvious choice was the
target amino acid. (R3) For identical amino acids in the corre-
sponding positions in the template and the target, choosing either
of the two meant the same. As a matter of fact, there were no
insertions in the target with respect to the template (i.e., no gaps
in the template).

Subsequent to threading, dynamic perturbations were intro-
duced to the designed binary PPI complexes (refer to the
“Molecular dynamic simulation (short and long)” section) and
the final atomic models were surveyed for their contact maps at
the receptor–ligand interface. Absurdities in atomic contacts (de-
sign artifacts) such as those between two positively or two neg-
atively charged amino acids (Lys-Lys, Glu-Asp, etc.) were obvi-
ated, wherever found, by mutating the corresponding amino acid
in the originally threaded sequence (e.g., Lys→Glu, Glu→

Arg, etc.). Such “artifact cleaning mutations”were chosen based
on overall knowledge of atomic interactions in proteins. Such
mutations often involved alteration in the hydrophobic character
of the amino acids as well. This process gave rise to an iterative
(threading → mutation → contact-map)n cycle in the protein
design pipeline. Each resultant contact map was rigorously and
manually scrutinizedwherein othermutable positionswere jotted
down that could intuitively raise the EC while retaining the Sc.
At instances, drastic changes like deleting a bulky side-chain
(e.g., Phe→Ala) were also attempted. Charged amino acids
were introduced as well as eliminated to favor and forbid the
formation of salt-bridges. To eliminate the negative charge in
Glu, Asp, they were mutated to corresponding polar variants
(Gln, Asn). Attempts were also made to deliberately incorporate
extended hydrophobic packing (i.e., introducing Ile, Met at stra-
tegic places, etc.) as well as aromatic stacking (introducing Tyr,
His, etc.) at the interface. The final evaluation of the binary PPI
complexes wasmade by the complementaritymeasures and their
mapping in CPdock. Again, a total of 50 redesigned alternatives
were constructed and tested in CPdock. Among the given alterna-
tives, this set could fairly cover all non-redundant “presumably
sensitive” point mutations and their combinations. Each individ-
ual case was carefully scrutinized with visual structural interven-
tion of their redesigned interfaces to remove design artifacts.
When plotted in CPdock, their population distribution in a close
cluster ensured empirical thresholds in both measures to be nat-
urally satisfied (Scmin: 0.402, ECmin: 0.173). In other words, the
range of values obtained in the whole set were tight in both
complementarity measures (Sc: [0.421, 0.723], EC: [0.178,
0.342]). Obtaining such tightly spaced numbers does not seem
to be possible by random design or a mere reshuffling of se-
quence. To test this, scrambled sequences (refer to the
“Scrambled sequences as negative control” section) were gener-
ated and undertaken in the same analysis. Just as the cases for
strategies 1a and 1b, clear discriminatory clusters were obtained
for the hits and the scrambled sequences (see Fig. 6) with prac-
tically no overlap. The disjointedness of the two clusters was
clearer and more convincing than the earlier two sets (strategies
1a and 1b).

An apparent saturation was ensured in terms of covering ar-
guably thewhole spectrumof “sensitive”mutations attempted on
the plausible mutational hot-spots. The analyses were greatly
helped by the rigorous repeated use of visual structural examina-
tion. Interestingly, shape complementarity of the “hits” in this
third set (strategy-2) has a much wider range (~ 1.5 to 2 times)
than that of electrostatic complementarity, compared to the other
two sets (strategies 1a, 1b). More interestingly, there was not a
single case with the EC raised to 40%. The difference in geomet-
ric fit among the designed sequences may cause from mutations
either resulting in undue holes being created at the interface or
leading to short contacts. The two events involve truncation and
forced incorporation of bulky groups (e.g., Gly→ Trp and
Tyr→Val, respectively) at the designed interface. At the same
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time, there appears to be natural evolutionary constraints on the
upper limit of EC at this interface, which does not seem possible
to be oversteped by different levels of protein engineering using
the pull of 20 naturally occurring amino acids. The resultant EC
values (natural as well as designed) physically mean quasi-stable
to stable binding. The ones that are stable (i.e., optimal in terms
of CPdock) were the ones of interest to be considered further.
Overall, there appears to be strong natural and evolutionary con-
trol over the dynamics of RBDSpike–ACE2 binding. The top 25
sequences were filtered based on their residence relative to the
optimal zone in CPdock, and considered further. The filtering also
accompanied careful individual visual re-scrutiny of their inter-
face. It is but trivial that these sequences were more closely
spaced in CPdock and mapped to the “probable”/“less probable”
regions (i.e., optimal/near-optimal zones). Again, all filtered se-
quences were successfully validated for fold-compatibility (aver-
ages 2.84 ± 0.16 in CSgl; 0.017 ± 0.0002 in CScp).

It was unambiguous from the comparison of the three
plots pertaining to the three different design-sets (see
Fig. 6) that the predicted solutions gradually improved
from Set-1a, Set-1b to Set-2 reflected in the gradual
north-eastern shift of the clusters (black dots in the
plots). In other words, the homology-based design per-
formed the best among the three. It was also evident
from these results that the “scrambled” sequences may
indeed serve as negative controls in the future experi-
mental validation of the current hypothesis.

A demonstrative example is cited in Fig. 7, wherein, a case
consisting of three designed sequences (HM0, HM3, HM5)
selected from the pool (Set-2) collectively portrays the impact
of strategic point mutations. For HM5, the designed sequence
contains a single point mutation (493-Q→N) with respect to

the initially threaded sequence (3SCJ_E on 6VW1_E, referred
to as HM0 in Fig. 7). In the third case (HM5), the designed
sequence further contains a second strategic point mutation
(505-Y→H) over and above the earlier mutation. Here in this
particular triad, the one with the single point mutation (HM3)
gives somewhat better numbers (Sc: 0.710, EC: 0.224) than
the one (HM5) with the additional aromatic mutation (Sc:
0.605, EC: 0.243), both better than the threaded sequence
alone (HM0; Sc: 0.563, EC: 0.248). This demonstrates the
scope and benefit of strategic point mutations to be invoked
on the threaded homologous sequence to further improve the
solution. Taken together with the natives (6VW1_E,
3SCJ_E), the results show a gradual shift towards a more
balanced optimal solution upon threading (HM0) followed
by subsequent strategic point mutations (HM3, HM5). The
full-length sequences of these designed RBDSpike mimics are
provided in Supplementary Dataset S1.

Dynamic persistence of the binding of the selected
designed structural mimics

Two best predicted solutions (HM19, HM21) designed from
strategy-2 were undertaken for long MD simulations (refer to
the “Molecular dynamic simulation (short and long)” section)
to study the dynamic persistence of the binding parameters. As
a mean to set the baseline, the native ACE2-complex (6VW1)
was also included in the calculation. HM19 and HM21 had
originally attained {Sc, EC} values of {0.614, 0.276} and
{0.687, 0.310}, respectively. To that end, all atom explicit-
water MD simulation production runs were performed for
200 ns each, wherein, the simulated coordinates were accumu-
lated at an interval of 100 ps resulting in 2000 snapshots (or

Fig. 7 Homology-based design of the CoV-2 RBDSpike: signatures of
stable high affinity binding. The top panel displays the superposed
ACE2-complexes (see the “Inherent evolutionary features of RBDSpike

naturally aiding the design of its structural mimics” section) of HM0,
HM3, and HM5 with their designed RBDSpike chains colored in light

pink, magenta, and tv_blue, respectively. The mutations are highlighted
in the form of sticks. The bottom panel shows the mapping of their
corresponding {Sc, EC} points in CPdock as per mentioned in the embed-
ded legend
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time-stamps) for each simulated protein-complex. The post-
simulation analyses commenced with collecting all snapshots
pertaining to each trajectory and superposing them (using TM-
align [91]) onto their respective templates (i.e., the starting
structures of their respective MD simulations). The time-
averaged Cα-RMS deviations of these superposed coordinates
were found to be 2.50 (±0.38) Å, 2.66 (±0.39) Å for the de-
signed ACE2-complexes (see the “Inherent evolutionary fea-
tures of RBDSpike naturally aiding the design of its structural
mimics” section) pertaining to HM19 and HM21, respectively
(see Supplementary Fig. S6). In contrast, the native-average
was ~1.5 times more with ~1.8 times the fluctuations (3.82 ±
0.66 Å) than both mimics. The dynamic persistence of the
complementarity measures was analyzed by running CPdock
on each sampled snapshot along the trajectory for each of the
three subjects (HM19, HM21, native) followed by drawing
their time-series plots individually for Sc, EC (see Fig. 8), and
their statistical analysis.

A direct comparison of the original and time-evolved
values (averages and standard deviations) for the complemen-
tarity measures (Sc, EC) can be made from the corresponding
time-series plots (see Fig. 8) as well as from Table 3. For
HM19 and HM21, the time-series averages (and standard de-
viations) were, respectively, found to be 0.664 (±0.048), 0.669

(±0.049) for Sc, and 0.278 (±0.082), 0.248 (±0.074) for EC
while the same for the native was found to be 0.628 (±0.050)
for Sc and 0.149 (±0.080) for EC. Thus, by and large, both
complementarity measures fairly retain their original trends
and nuances as revealed from their respective initial values
(see Table 3) in all three subjects. The numbers further suggest
that the primary differentiating descriptor between the native
and the designed mimics is indeed EC, while, the shape de-
scriptor (Sc) serves as a (threshold-dependent) necessary cri-
terion for the complexation, as it does generally for macro-
molecular binding per se (refer to the “Affinity and stability of
binding from local and non-local measures of complementar-
ity” section). In more elaborate terms, Sc, once into its optimal
range (refer to the “Shape and electrostatic complementarity”
section), converges further to a more optimized narrower
range (dependent on the particular protein co-complex sys-
tem) with time, irrespective of their fine-grained structural
difference brought about by the strategic design(s) (see
Table 3). The difference between the corresponding ECs (de-
signed vs. native) however persists throughout the entire
200 ns simulated trajectories. Notably, the native EC original-
ly falling into the sub-optimal range (EC6vw1 = 0.102), largely
remains in the same (sub-optimal) range throughout the course
of the entire simulation run. On the other hand, the

Fig. 8 Time-series plots of Sc and EC for the selected designed structural
mimics in comparison to the native. a and b Plot the time-evolved Sc
profiles for HM19 and HM21, respectively, alongside that of the native
using different colors (magenta: native, red: mimics; as given in the leg-
end-box), while, c and d plot their corresponding time-evolved EC

profiles. The thicker lines drawn parallel to the X-axis plotted in different
colors (blue: native, black: mimics, as also given in the legend-box)
represent their corresponding time-series averages. Both Sc and EC are
correlation measures, defined in the range of [−1, 1]. The X-axis repre-
sents the simulation time (in units of ns)
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improvement brought about by the strategic design is fairly
retained with time in both selected designed mimics. Equally
notable is the fact that EC values for the designed mimics
(original as well as time-evolved) regularly and consistently
hit the crucial “near-optimal to optimal” range (refer to the
“The protein design strategy: sampling and scoring” section)
indicating stable electrostatic matching at the designed inter-
faces. These observations are consistent with the original
proposition that the native ACE2-complex (6VW1) forms
with high affinity, but lacks stability over time due to sub-
optimal electrostatic matching at its interface. On the other
hand, the directed design enables the mimics (HM19,
HM21) with the potential to bind to ACE2 with equivalent
high affinity, and also to remain bound stably over time.

Within the entire 200 ns trajectories, Sc could maximally
be raised to 0.797 and 0.793 for HM19 and HM21 while their
corresponding highest EC values attained were 0.592 and
0.497, respectively. All numbers unequivocally indicate that
the binding is dynamically stable and of high affinity. The
directed improvement in the matching of electrostatic surface
potentials for HM19 and HM21 are portrayed in Fig. 9 and
Supplementary Fig. S7, respectively, citing the MD-snap-
shot(s) with their highest attained EC values. A comparison
with Fig. 3 reveals the improvement in EC from the sub-
optimal to the optimal range.

Similar dynamical trends are also reflected from the time-
series plots for E2d (see Supplementary Fig. S8)—which esti-
mates the 2D Euclidean distance of a plotted {Sc, EC} point in
CPdock from the “probable” region of the plot (refer to the
“Measuring the dynamic stability of the proposed ‘optimal’ so-
lutions” section). To note, E2d renders a value of “zero” if the
point falls into the “probable” region. For E2d, the native has
substantially greater fluctuations (see Supplementary Fig. S8)
compared to both HM19 and HM21 at different patches of the
simulation trajectories. Overall, this leads to a standard deviation
of ~2.5 times higher in the native than in both of the designed

ACE2-complexes (see the “Inherent evolutionary features of
RBDSpike naturally aiding the design of its structural mimics”
section). Also, notably, the time-series average for the native
E2d is more than 4 times to that of the designed ACE2-com-
plexes. In contrast, the same time-series averages for both HM19
and HM21 are almost identical to each-other and close to zero.
All the numbers unambiguously indicate the dynamic stability of
the designed ACE2-complexes relative to that of the native.

Implicit to the E2d analysis, distribution of {Sc, EC} points
(coming from each snapshot in a given trajectory) across the
three defined regions in CPdock (refer to the “Fold recognition”
section) was also surveyed for each ACE2-complex
(pertaining to HM19, HM21, native). While, for HM19, the
fraction of snapshots falling into the “probable,” “less proba-
ble,” and “improbable” regions of CPdock were 78.05, 20.05,
and 14.45%, respectively, the same fractional counts for
HM21 were found to be 77.8, 20.9, and 1.3%. In great con-
trast, the “less probable” and “improbable” regions together
populated 56% of the native trajectory (“probable” 43.5%,
“less probable” 42.55%, “improbable” 13.95%). Overall, the
numbers collectively suggest clear improvements from native
instability to stable binding in the designed ACE2-complexes
over time. As a formal test of significance (of the obtained
deviations), we performed a χ2 test between the native and
each of the designed sets from their respective raw counts
using a 3-bin model (i.e., df = 3–1: “probable,” “less proba-
ble,” “improbable”; χ20.05 = 5.991). The χ2 method is tradi-
tionally associated with the Complementarity Plot(s) through
several earlier applications using the plot(s) as discerning dis-
criminatory metric(s) between different population-
distributions [44, 45, 48]). For the current cause, the “null hy-
pothesis” assumed “no significant improvement in stability
over time upon the directed design” and that “the deviations
from the native distribution were simply obtained by chance”.
In reality, however, the resultant χ2 values (see Eq. 6 defined in
the “Buried surface area” section) were computed to be

Table 3 Complementarity (Sc, EC) and its time-evolution for the selected designed binary complexes compared to the native

ACE2-
complexes

Sc EC ΔGbinding (kcal/mol)

Original Time-
evolved

Original Time-
evolved

Time-evolved

HM19 0.614 0.664
(±0.048)

0.276 0.278
(±0.082)

−5.939
(±2.581)

HM21 0.687 0.669
(±0.049)

0.310 0.248
(±0.074)

−5.634
(±3.011)

Native 0.555 0.628
(±0.050)

0.102 0.149
(±0.080)

0.854
(±4.981)

The original Sc, EC values (as obtained before the corresponding longMD simulations) alongside their time-evolved averages (and standard deviations)
are tabulated in a row-wise tabular format for the native and designed binary complexes. In addition, the corresponding binding free-energies (ΔGbinding)
for each subject (ACE2-complex: see the “Inherent evolutionary features of RBDSpike naturally aiding the design of its structural mimics” section) are
also tabulated
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1001.375 and 990.654 for HM19 andHM21, respectively, both
more than 160 times to that of the (above-quoted) χ20.05 for a 3-
bin model. This literally rules out even the slightest of chances
to accept the proposed “null hypothesis” and concludes instead
that the deviations from the frequencies distributed under the
“null hypothesis” are indeed significant and must not have oc-
curred by chance. The fact that the selected designed ACE2-
complexes (for both HM19 and HM21) are largely contained
within the “near-optimal to optimal” regions of the CPdock over
time is also reflected from their three-dimensional population
density plots (see Supplementary Fig. S9).

Further, as a mean to cross-validate the predicted improve-
ment in binding stability reflected from the complementarity
measures (Sc, EC), binding/interaction energies (ΔGbinding) of
the native (ΔGnative

binding ) and the selected designed ACE2-

complexes (ΔGmimic
binding ) were computed using FoldX (refer to

the “Estimating changes in binding/interaction energies for the
proposed ‘optimal’ solutions” section) along their corresponding
(200 ns) simulated trajectories. This was followed by computing
their directed difference (ΔΔGmimic

binding ) following Eq. 5 (defined in

the “Estimating changes in binding/interaction energies for the
proposed ‘optimal’ solutions” section) and drawing time-series
plots individually for all three free-energy-difference terms (see
Fig. 10). Time-series averages (and standard deviations) of the
corresponding ΔGbinding terms were found to be −5.939 (±
2.581) kcal/mol and −5.634 (± 3.011) kcal/mol for the ACE2-
complexes in HM19 andHM21, while, only amounting to 0.854
(± 4.981) kcal/mol for the native ACE2-complex. The obtained
native average seems to be of potential physical significance,

since it hits a near-zero value in ΔGnative
binding meaning that the

Fig. 9 Electrostatic surface representation of one of the best predicted
designed binary complexes (for HM19). a–d The electrostatic surface
map of the snapshot (picked up from its 200 ns MD simulation
trajectory) with the highest attained EC value for HM19 (the “The
protein design strategy: sampling and scoring” section). The rest of the
figure may be described likewise to that of Fig. 3. Briefly, a and c
represent “self-potentials” while b and d represent “partner-potentials”
realized on the ligand and receptor surface, respectively, for HM19.
Self- and partner-potentials are as defined in the legend of Fig. 3.
Arrows indicate whether the surface potentials are due to “self” (a, c) or

“partner” (b, d). Coloring of “cartoons” are as in Fig. 3. A direct com-
parisonwith Fig. 3 clearly shows that the match in counter-colors (red and
blue) improves appreciably between corresponding patches on the con-
tact surfaces (due to their respective self- and partner-potentials) with
respect to that of the native ACE2-complex (see the “Inherent evolution-
ary features of RBDSpike naturally aiding the design of its structural
mimics” section). This reflects that the native weak anti-correlation in
electrostatic surface potential could be significantly strengthened by the
strategic design
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dynamic persistence of the native ACE2-complex is only mildly
favored thermodynamically. The associated standard deviation
of ~ ± 5 kcal/mol reflecting high dynamic fluctuations (μ = 6σ5)
in the native ΔGbinding further suggests that the native ACE2-
complex (6VW1) is indeed energetically unstable over time.
Together, this favorably speaks for a model of quasi-stable bind-
ing/interaction. Given that the purpose of the complexation here
is to switch on the membrane fusion and viral entry to the host
cell [15], a transient (quasi-stable) nature in the interaction of the
native RBDSpike and ACE2 is indeed intuitively expected, per-
haps also reflected from the appreciably low (and sub-optimal)

native-EC values all-throughout. Also, the “surprisingly low
kinetic barrier” revealed for the preceding event (see the
“Comparative stability of the RBDSpike conformers influencing
their switch” section) does seem to add to the proposition.
Notably, the proposition of the “low kinetic barrier” for the
conformational switching of the Spike protein (“pre” to
“post”-fusion forms) is purely based on experimental biophysi-
cal and structural data, wherein, they have found the dissociated
“cleaved S1/S2 complex” in absence of ACE2 as well as the
adopted “post-fusion conformer of the S2 fragment” under mild
detergent conditions mimicking a membrane environment [15].

The relative improvement in binding stability over time
brought about by the strategic design is also reflected from

5 μ: mean; σ: standard deviation

Fig. 10 Time-series plots of binding/interaction energies for the selected
designed structural mimics and their changes with respect to the native.
Panels a and b Plot the time-evolved ΔGmimic

binding profiles (as defined in the

“Estimating changes in binding/interaction energies for the proposed ‘op-
timal’ solutions” section) for HM19 and HM21, respectively, alongside
that of the native (ΔGnative

binding : the “Estimating changes in binding/

interaction energies for the proposed ‘optimal’ solutions” section) using
different colors (ΔGb in Fig.10: magenta: native, red: mimics; as given in
the embedded legend-boxes). c The corresponding difference plots

(ΔΔGmimic
binding :: see Eq. 4 defined in the “Estimating changes in binding/

interaction energies for the proposed ‘optimal’ solutions” section) for the
mimics (HM19: magenta; HM21: red; as also given in the legend-boxes).
The thicker lines drawn (in all three panels) parallel to the X-axes repre-
sent the corresponding time-series averages of the plotted parameters with
their colors and descriptions given in the legend-box (blue: native, black:
mimics, for a and b; blue: HM19, black: HM21 for c). The X-axis rep-
resents the simulation time (in units of ns)
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the high negative time-averaged ΔGmimic
binding values (Table 3)

and their appreciably low standard deviations (roughly scaling
to μ = 2σ for both HM19 and HM21). As a result, the corre-
sponding ΔΔGmimic

binding values are also equally negative (HM19

−6.793 ± 5.990 kcal/mol; HM21 −6.487 ± 5.781 kcal/mol)—
which further confirms the predicted improvement in their
thermodynamic stability over time. Thus the improvement in
binding stability predicted from complementarity (EC in par-
ticular) is also clearly reflected in the corresponding free en-
ergy estimates of the binding events, over time.

Nullifying the feasibility of the proposed designed
therapeutics to compete with the ACE2–angiotensin II
binding

Angiotensin Converting Enzyme 2 (ACE2), a vital counter-
regulatory component of the Renin-Angiotensin System
(RAS), has recently got great attention in COVID-19 research
for acting as a doorway to SARS-CoV-2 into the host cells
[92–96]. Upon low blood flow, kidney cells convert the cir-
culating pro-renins into renins which further take part in cat-
alyzing the angiotensinogen secreted by liver cells into angio-
tensin I [95]. The membrane-bound Angiotensin Converting
Enzyme (ACE) present on vascular endothelial cell surface in
the lungs, thereafter, converts angiotensin I into angiotensin II
which is an amphipathic linear octa-peptide that serves as a
vasoconstrictor [95]. As a result, angiotensin II causes blood
vessels to be constricted to increase blood pressure through
engaging type 1 angiotensin receptor (AT1R) [96, 97].
Angiotensin II also increases blood pressure by stimulating
adrenal cortex cells to secrete the aldosterone hormone. So,
under normal physiological condition, a fine balance between
ACE2–angiotensin II and ACE2–Ang-(1–7) has to be main-
tained in order to control the blood pressure and inflammation.
As because SARS-CoV-2 utilizes the membrane bound ACE2
receptor to gain entry into host cells, so this is a condition
where the viral Spike protein bound ACE2 receptors will be
less available to angiotensin II. As a result, an equilibrium
shift towards the increased activity of ACE2–angiotensin II
might drive acute lung injury. Furthermore, according to the
current hypothesis, SARS-CoV-2–ACE2 binding causes in-
creased internalization and shedding off of the ACE2 receptor
making it further unavailable to angiotensin II and thereby
causing less production of Ang-(1–7). This can induce blood
pressure along with direct parenchymal injury [98].

Our current work has considered the possibility of whether
or not our designed plausible therapeutics can compete with
the binding site of angiotensin II on ACE2 and may thereby
disrupt the balance in RAS. In this regard, the NMR structure
of angiotensin II (PDB ID: 1N9V) was surveyed which has
little conformational deviations among its 21 models (average
RMS deviation: 0.187 ± 0.09 Å upon aligning to MODEL-1

in PyMol). When, 1N9V (MODEL-1 taken as the
representative structure) was superposed onto the ligand (E)
chain of 6VW1, the peptide is found distant from the ACE2
binding site (see Supplementary Fig. S10) having an RMS
deviation of 4.28 Å. Based on a pairwise sequence alignment
(in CLUSTAL-OMEGA [99]), the angiotensin II sequence
was then threaded onto “6VW1_E_bs,” the ACE2 binding site
on RBDSpike (refer to the “Reaction-prone nature of the ACE2
binding site in SARS-CoV-2 RBDSpike” section). The corre-
sponding atomic model was subsequently built which resulted
in an RMS deviation of 3.46 Å considering a stretch of just
eight mapped amino acids. Thus, the two molecular objects
does not seem to have any appreciable structural resemblance.
Furthermore, when this built atomic model is placed onto the
RBDSpike–ACE2 complex (6VW1), it has no proximity with
the ACE2 receptor (displayed as solid surface in
Supplementary Fig. S10, bottom panel). No atoms were found
at the native RBDSpike–ACE2 interface. Naturally, a small
bent l inear octa-peptide l ike angiotensin II (see
Supplementary Fig. S10, top panel) finds little chance to fit
into a plausible binding model with the Spike protein binding
site in ACE2—which is nomore than a singleα-helix (refer to
the “Evolution of the CoV-2 RBDSpike–ACE2 interaction dy-
namics” section). Rather, a deep groove or a pocket is gener-
ally required to engulf such small molecules without having
the necessity to have a proper shape and/or electrostatic match
at the interface [100–102]. Thus, the two ligands (angiotensin
II and RBDSpike) have no good reason to compete for an iden-
tical binding site on ACE2. Also, it is well-known that unlike
protein–protein binding, where large interacting surfaces
(~1600 Å2 on average) [103] need to be carefully tailored to
fit into each-other over extended areas, a small-molecule li-
gand (or co-factor) can present far greater conformational var-
iation upon binding to different binding pockets—which, in-
turn, exhibit more variability in shape and physicochemical
attributes than can be accounted for by the adopted conforma-
tional multiplicity of the ligand [44, 100–102]. This further
nullifies the possibility of a binding conflict with angiotensin
II at the Spike binding site of ACE2.

Having said that, the actual binding site of angiotensin II on
ACE2 is not yet known experimentally. To that end, further
computational structural investigation of the two available in-
dividual partner molecules were carried out to gain somemore
intuitive insights into their plausible binding mode, followed
by performing a molecular docking of the two.

The membrane bound ACE2 receptor represents the extra-
membrane domain of the corresponding integral membrane
protein. A closer look into its structure reveals that it is an
all-α protein-domain (helical bundle) resembling the shape
of an elongated spheroid and thereby forming a percolative
channel fairly open to the aqueous solvent at either pole. It
should thus mostly be facing an aqueous environment sup-
ported by having accordingly a bulk majority of hydrophilic
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regions. This was confirmed by the BRANEart webserver
(http://babylone.3bio.ulb.ac.be/BRANEart/index.php) which
analyzes strength, stability, and weaknesses of different
regions of membrane proteins [104] and colors them
accordingly (blue: hydrophilic, white: neutral, red:
hydrophobic). BRANEart further lists a residue-wise
“Membrane Propensity” score, defined in the range of −1
(red: hydrophobic) to +1 (blue: hydrophilic) computed by a
linear regression machine trained on a collection of statistical
potentials. From numerically as well as from the visual out-
puts (see Supplementary Fig. S11A), it was evident that in-
deed most part of the ACE2 structure (~85.5%) prefers to stay
in polar (aqueous) environments. These hydrophilic regions
are interspersed with neutral/mildly hydrophobic patches
coming from some of the component helices, thereby forming
an amphipathic6 open inner-groove, partially exposed to the
solvent at either poles. A small molecule thus has a great
chance to pervade and slip through the long axis of the
open-inner groove and be sustained there stably—which ap-
pears to be genuinely plausible for an open-ended amphipath-
ic linear octa-peptide like that of angiotensin II (see
Supplementary Fig. S11B). To test this structural hypothesis,
two docking studies were performed using the popular
protein-docking webserver Cluspro (v.2) [105, 106]: (a)
docking of angiotensin II vs. ACE2 and (b) docking of angio-
tensin II vs. the RBDSpike–ACE2 binary PPI complex.

As was anticipated from the structural hypothesis, the results
of the first docking test (a) indeed revealed that angiotensin II
prefers to diffuse through the open inner-groove of ACE2 and
be contained stably at the protein core. The top 10 docked poses
(as ranked and returned by Cluspro) upon superposition onto

the ACE2 global frame of reference (as in 6VW1) were invari-
ably found to hit the inner groove/core of the protein (see
Fig. 11a) which has no structural conflict with the binding of
RBDSpike (displayed alongside the docked poses in the same
image). As can be expected, the same results were virtually
reproduced in the second docking test (b) even within the larger
structural context of the RBDSpike–ACE2 binary PPI complex,
fed in as the receptor (see Supplementary Fig. S12). The top
ranked docked binary complex (from (a)) was further surveyed
in BRANEart which resulted in compatible hydrophilicity/
hydrophobicity profiles for the two binding partners (angioten-
sin II and ACE2) in their bound form (see Fig. 11b). Thus the
docking results are very much in accordance with the structural
hypothesis stated and reasoned above—which practically nul-
lifies all realistic chances of a potential conflict between the two
bindings. Taken together, there does not seem to be any con-
vincing structural rationale to favor a plausible interference
caused by the proposed therapeutic intervention to the RAS
via ACE2.

Comparing the proposed therapeutic intervention
with the current state-of-the-art

One of the prime focuses of the recent research advances on
anti-viral therapeutics for SARS-CoV-2 has been on utilizing
the already available knowledge on the host cell entry mech-
anisms of SARS-CoV,MERS, and other coronaviruses. Three
general pathways that could lead to the development of poten-
tial antiviral therapeutics are (i) repurposing through the test-
ing of pre-existing antiviral drugs, (ii) by high throughput
screening of small molecules, and (iii) through the redevelop-
ment of new drugs or neutralizing antibodies or vaccines. Our
current study proposes a non-trivial protein design approach6 Having both hydrophobic and polar regions

Fig. 11 Docking and structural analysis in view of angiotensin II - bind-
ing to ACE2 with reference to the RBDSpike–ACE2 complexation in
COVID-19. a The Cluspro docking results of Angiotensin II (PDB ID:
1N9V, MODEL 1) docked onto ACE2 (6VW1, chain A). The ligand
chain of 6VW1 (chain E) is also displayed alongside the docked poses
(for clarity). The 10 top-ranked docked poses of the ligand (angiotensin
II) are displayed both as cartoon and dots (surface points) for better focus.

b The BRANEart visual output of the top ranked angiotensin II ACE2
docked binary complex. The figure in b is regenerated in PyMol from the
.pml file provided in the BRANEart output. Coloring of structural regions
follow the coloring scheme specified in the color bar: blue: hydrophilic,
white: neutral, red: hydrophobic (see the “Dynamic persistence of the
binding of the selected designed structural mimics” section)
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to develop antiviral therapeutics that might act as potential
competitive inhibitors of the SARS-CoV-2 RBDSpike. After
gaining insight into host cell entry mechanisms, importantly
through the revelation of X-ray crystallographic structure of
SARS-CoV-2 Spike protein binding to its cognate receptor,
ACE2, on human cells [21, 24, 107], the drug-designing
methods are primarily revolving around the S protein
subdomain blockers for obvious reasons.

There are also peptide-based approaches involving strate-
gic contextual design of hybrid and fusion peptides. Such a
hybrid peptide has been computationally constructed by
linking two discontinuous fragments of ACE2 (residues 22–
44 and 351–357) by a linker glycine [108]. In addition to
designing of small peptides from ACE2 sequence, clinical-
grade soluble hACE2 has proven to be a promising therapeu-
tic candidate molecule which has shown to block the entry and
growth of SARS-CoV-2 in the blood vessel and kidney
organoids system [109]. In order to develop potential thera-
peutics against SARS-CoV-2, researchers have also targeted
the HR1 (heptad repeat 1) and HR2 domains in the S2 subunit
besides targeting RBDSpike (S1) [110]. Lipo-peptide such as
EK1C4 has been demonstrated to be the most potent fusion
inhibitor [110, 111]. Further, evidences have been put forward
in support of significant efficacies of peptide inhibitors de-
rived from the HR2 domain which can block the fusion of
the viral and the host cell membranes [112].

Alternatively, it has been shown by wet-lab experiments in
hACE2-expressing cells that the recombinant RBDSpike could
block the entry of both the SARS-CoV and SARS-CoV-2 into
the host cells [113]. A recent MD simulation study coupled
with bio-layer interferometry [114] has targeted the “ACE2
PD α1 helix” (refer to the “Evolution of the CoV-2 RBDSpike–
ACE2 interaction dynamics” section) where the SARS-CoV-
2 RBDSpike binding actually occurs. This 23-mer peptide frag-
ment (residues 21–43) can effectively bind to SARS-CoV-2
RBDSpike at a very low nano-molar affinity (Kd = 47 nM)
thereby posing a high possibility to interfere with the viral
entry into host [114]. Importantly, although their peptide-
based drug designing approach means to bypass the alteration
in ACE2 physiological functions, the actual effect of their
RBDSpike blocker still remains to be checked in terms of titters
in human system. Such approaches are essentially aiming for
an “antigen arrest” before the pathogen reaches the host pul-
monary system. A similar approach has also been adapted
using nanobodies for directed delivery of neutralizing anti-
bodies of RBDSpike [115]. In complete contrast, our approach
takes the alternative route to develop therapeutics which may
potentially block the RBDSpike binding site on the cognate
receptor, ACE2. We take advantage of the quasi-stable native
binding of RBDSpike to ACE2 in SARS-CoV-2 and aim to
appreciably increase the binding stability while retaining
near-native high affinity. The mutations were directly per-
formed on the native experimental RBDSpike–ACE2 complex.

The proposed designed variants are the end-products of cycles
of rigorous computational screening through high-level struc-
tural descriptors, and the predicted improvement in binding
stability in their corresponding ACE2-complexes (see the
“Inherent evolutionary features of RBDSpike naturally aiding
the design of its structural mimics” section) over time is also
cross-validated by appropriate free energy estimates. The pro-
posed “high affinity stable binding” in the predicted ACE2-
complexes pertaining to the designed structural mimics should
therefore serve as the basis of their potential usage as blockers
of the native Spike protein for its cognate receptor. Aligned
approaches have shown the effect of key residue substitutions
in SARS-CoV-2-CTD (see Supplementary Fig. 1) leading to a
fourfold increased affinity for receptor binding than that of the
native binary PPI complex [24]. We further structurally cross-
checked that the designed RBDSpike mimics do not seem to
have a realistic chance to cause a potential conflict with the
binding of angiotensin II to ACE2, and therefore presents only
a thin feasibility to interfere with the native physiological
function of ACE2 (refer to the “Nullifying the feasibility of
the proposed designed therapeutics to compete with the
ACE2–angiotensin II binding” section). Furthermore, the pre-
scribed RBDSpike mimics being substantially smaller in size
(of the order of 1/100th) than those of the full virus particles
should be able to reach the binding sites at a much faster time-
scale.

Although other groups have followed a more direct ap-
proach (“antigen arrests” as well as “immunization”) to pre-
vent RBDSpike binding to ACE2 through designing mini-
proteins [116], peptide blockers [114], nanobodies [115],
and vaccines [117–119], we have chosen a more indirect
and unconventional (reverse) approach in our proposed bio-
therapeutic design. The reasons for our choice are as follows:

Firstly, in the absence of the viral infection, the ACE2–
angiotensin II binding is not known to transmit any molecular
signal leading to transcription of downstream genes [120,
121]. So, from that end, the proposed therapeutics do not
appear to not cause any further impact on the intra-cellular
downstream signaling. The second benefit is related to the
“systemic clearance” of the therapeutics after their course of
action—which is a common concern to all administered com-
petitive inhibitors. It is well known that SARS-CoV-2 infec-
tion is associated with ACE2 downregulation [121, 122]
mostly by endocytic internalization of ACE2, and also influ-
enced by some other unknown mechanisms. The proposed
RBDSpike mimics will likewise be internalized in the form of
their ACE2-complexes (see the “Inherent evolutionary fea-
tures of RBDSpike naturally aiding the design of its structural
mimics” section), however, with the definite advantage of not
carrying with them the rest of the viral particle. Additionally,
the designed mimics being significantly smaller in size than
the viral particle would likely have a faster approach to ACE2.
By virtue of potentially having a greater stability (as all the
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results unequivocally indicate), they would thus occupy the
viral attachment sites on the host cell membrane, eventually
out-competing the viral binding (and infection). So, that way,
the designed mimics would actually act against the endocytic
internalization of the native RBDSpike, and at the same time,
inhibit the host cell entry of the viral particle, by the proposed
membrane fusion mechanisms [15]. The suggested downreg-
ulation of ACE2 will thus (in all probability) be only short-
termed followed by a fast restoration of the physiological ho-
meostasis both in terms of ACE2 and angiotensin II.
Moreover, the internalization of ACE2-complexes (see the
“Inherent evolutionary features of RBDSpike naturally aiding
the design of its structural mimics” section) pertaining to the
proposed designed mimics will naturally ensure the metabo-
lism of the therapeutics and their systemic clearance. Thirdly,
SARS-CoV-2 being extremely pleiotropic in nature, its titer(s)
in individuals of different age groups, gender, and with differ-
ent medical conditionsmight be challenging to evaluate. Since
our reverse approach is aimed to block the ACE2 receptor
which is native to the individual (rather than a foreign body),
the precise doses of the therapeutics will likely be easier to
determine. Considering these salient advantageous features,
we preferred the reverse approach.

The proposed method, however, comes with certain poten-
tial caveats. Firstly, the predictions are purely computational
(however, based on available experimental structures), yet to
be validated in the wet lab. Secondly, important part of the
structural hypothesis is based on available knowledge and
current understanding of the viral entry mechanisms, part of
which are also currently at a hypothesis level. Thirdly, the
mode of administration (oral/intravenous/inhalation) is yet to
be determined through wet lab experiments. Fourthly, cyto-
kine storms (as immune responses) [123, 124] are found to be
triggered upon binding of coronavirus with ACE2 and the
consequences of the proposed therapeutic(s) to that end is
yet to be tested again by wet lab experiments.

Conclusions

Quasi-stable binding appears to be one of the essential features
of SARS-CoV-2 RBDSpike–ACE2 interaction. Having said
that, the ligand possesses a high affinity towards its cognate
receptor in the human host. This “affinity-stability trade-off”
seems to be fine-tuned during evolution in the corresponding
protein family and fold—as revealed from the study of homol-
ogous binary PPI complexes (refer to the “Evolution of the
CoV-2 RBDSpike–ACE2 interaction dynamics” section). The
current study unravels this fine-tuning from coordinate-driven
local and non-local complementarity measures, {Sc, EC}, and
validates the findings by appropriate free energy estimates.
While being counterbalanced by compensatory shape con-
straints (attributed to high affinity), attainment of sub-

optimal electrostatic matching at the interface certainly ap-
pears to be a characteristic feature of this binary (RBDSpike–
ACE2) association, conserved through evolution. Even in the
designed binary PPI complexes, other than a low fraction of
snapshots (varying from 1.5 to 5.5%) in the long MD simula-
tions, the maximally elevated EC value was found to be not
more than 40% (refer to the “Design strategy-1: altering the
hydrophobic character of the amino acids” and “Design strat-
egy-2: homology-based protein design: taking templates from
nature itself” sections). That too, given the design-protocol
being directed to raise the EC (refer to the “The protein design
strategy: sampling and scoring” section). The amino acid
composition of the ACE2 binding site of the extracellular
RBDSpike does seem to be non-trivial (compared to those in
native globular proteins) involving solvent-exposed hydro-
phobic residues. This appears to be causally related to the
conformational switch between RBDdown and RBDup states
(the “Comparative stability of the RBDSpike conformers
influencing their switch” section) and the corresponding
change in the membrane environment it encounters. This has
profound impact on the transitioning residues, effectively
comprising the ACE2 binding site in RBDSpike. As a conse-
quence, the RBDSpike–ACE2 interface consists of a bunch of
hydrophobic–polar interactions coupled with weak aromatic
stabilization. The relative stability of the native RBDdown over
its more proactive RBDup state (in the ACE2-complex) is clear
and unambiguous from all comparative structural measures
(the “Comparative stability of the RBDSpike conformers
influencing their switch” section) which is well known to help
the SARS-CoV-2 to remain in the native “down” state until
host cell proximity enabling them to escape the host immune
surveillance. This effectively renders their conformational
switch (RBDdown→RBDup) to be kinetically driven, and sim-
ilar concussions have also been drawn from biochemical wet-
lab experiments, collectively unraveling a “transient confor-
mational switch” (the “Comparative stability of the RBDSpike

conformers influencing their switch” section). Furthermore,
the structure of the native RBDSpike–ACE2 complex is remi-
niscent of a molecular handshake rather than a hug or a cling
(refer to the “Evolution of the CoV-2 RBDSpike–ACE2 inter-
action dynamics” section) like those found in analogous bina-
ry PPI complexes in other related respiratory viral disorders
(refer to the “Comparison with equivalent protein complexes
from MERS and Ebola” section). Together, this leads to the
high reaction-prone nature of the RBDSpike. Also, the
RBDSpike–ACE2 interaction is intricately coupled with the
host-protease mediated peptide-cleavage (as detailed in the
“Introduction” section), which, being an enzymatic reaction,
involves covalent bond-breaking and bond-making. The inter-
action is thus concomitantly linked to the ephemeral formation
of a transition state (TS) involving a saddle point, as is natural
to enzyme kinetics. This also strongly speaks in favor of the
quasi-stable nature of the RBDSpike–ACE2 interaction.

J Mol Model          (2021) 27:191 Page 27 of 32   191 



Quantum chemical calculations (in combination with molec-
ular mechanics) may be invoked to reveal the plausible mech-
anism of the associated enzymatic “cleavage” reaction (out-
side the scope of the current study). The improvement in bind-
ing stability predicted from complementarity (EC in particu-
lar) is also clearly reflected in the corresponding free energy
estimates of the binding events, over time (the “Dynamic per-
sistence of the binding of the selected designed structural
mimics” section). The time-evolved native ΔGbinding values
are further suggestive of the quasi-stable nature of interaction,
concomitantly coupled to the transient (“pre” to “post”-fusion)
conformational switch of the Spike protein (the “Comparative
stability of the RBDSpike conformers influencing their switch”
and “Dynamic persistence of the binding of the selected de-
signed structural mimics” sections). This quasi-stable nature
of the interaction has been utilized beneficially towards the
directed design of the structural mimics aimed to serve as
plausible blockers of the RBDSpike–ACE2 interaction. The
objective of the exercise was to improve the interaction-
stability while keeping intact the already attained high affinity
so that the designed mimics can actually block the host-
pathogen interaction by stably occupying the binding sites
on the receptor. Accordingly, EC was directed to be raised
in an iterative protein design cycle while retaining the Sc at
least native-like. As a matter of fact, both complementarity
measures could be raised substantially in the best predicted
designed ACE2-complexes with respect to their native esti-
mates. Starting from a native {Sc, EC} value of {0.555,
0.102}, we could statistically hit the (0.6, 0.7) and (0.3, 0.4)
ranges in Sc and EC, respectively (refer to the “Design strat-
egy-2: homology-based protein design: taking templates from
nature itself” section), for the designed interfaces, in spite of
the evolutionary constraints in EC. Together, these ranges in
{Sc, EC} fall in the optimal zone for high affinity stable bind-
ing in protein binary complexes—as revealed from the map-
ping of the corresponding points in CPdock. This was possible
by means of realizing the benefits of directly adapting natural
examples in the design process. Thus, the use of homology-
based design coupled with strategic mutations altering the
hydrophobic characters of key amino acids appeared to be
judicious in achieving the desired goal. Hence, the paper
may also be viewed to have presented a design methodology
per se, the applicability and robustness of which are to be
tested across related host-pathogen systems.
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