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A B S T R A C T

Intrinsically disordered proteins (IDP) serve as one of the key components in the global proteome. In contrast to
globular proteins, they harbor an enormous amount of physical flexibility enforcing them to be retained in
conformational ensembles rather than stable folds. Previous studies in an aligned direction have revealed the
importance of transient dynamical phenomena like that of salt-bridge formation in IDPs to support their physical
flexibility and have further highlighted their functional relevance. For this characteristic flexibility, IDPs remain
amenable and accessible to different ordered binding partners, supporting their potential multi-functionality.
The current study further addresses this complex structure-functional interplay in IDPs using phase transition
dynamics to conceptualize the underlying (avalanche type) mechanism of their being distributed across and
hopping around degenerate structural states (conformational ensembles). For this purpose, extensive molecular
dynamics simulations have been done and the data analyzed from a statistical physics perspective. Investigation
of the plausible scope of 'self-organized criticality' (SOC) to fit into the complex dynamics of IDPs was found to be
assertive, relating the conformational degeneracy of these proteins to their functional multiplicity. In accordance
with the transient nature of 'salt-bridge dynamics', the study further uses it as a probe to explain the structural
basis of the proposed criticality in the conformational phase transition among self-similar groups in IDPs. The
analysis reveal scale-invariant self-similar fractal geometries in the structural conformations of different IDPs.
The insights from the study has the potential to be extended further to benefit structural tinkering of IDPs in their
functional characterization and drugging.

1. Introduction

Complex systems exist in Nature where the structure of the system,
in an abstract sense, degenerates among population ensembles of var-
ious conformations [1]. In other words, degeneracy offers a complex
system the ability and flexibility to yield the same essential output by its
structurally different elements [1]. Here structure may refer to the
structural conformations in quantum particles [2,3], isomerism in
stereo-chemistry, rotameric variation in amino acid side-chains [4] and
to wherever the concept of degenerate states in structural ensembles
may be applicable. Even the synchronization pattern of electrical ac-
tivities of neurons in different parts of the brain [5] or pattern of eco-
nomic consumption among different social groups [6] may be mapped
to an abstract structural ensemble consisting of degenerate states.
Structural degeneracy is important as it provides the system the flex-
ibility to exhibit different properties, switch between different modus

operandii, which, in the context of living systems (or functional unit of a
living system, say, proteins), supports a variety of housekeeping as well
as additional functionalities. Degeneracy further imparts in a complex
system a natural buffering ability, wherein, the system can readily
produce distributed systemic responses to local perturbations through
‘networked buffering’ [7].

In spite of being integral to complex systems, the concept of de-
generacy is relatively new in biology. Even, within the broad biological
spectrum, it is more established in certain areas (e.g., in genetic code,
immune systems etc.) [1] than others. For example, its plausibility is
still to be explored in full details in highly dynamic biological soft
matters and bio-polymers. Degeneracy also aids critically in evolution,
wherein, the network-view of biological systems (across a wide range of
spacio-temporal dimensions) often proves to be handy. It has been well
argued, supported by network based theoretical analyses [8,9] that
while evolution is essentially direction-less [10], degeneracy is
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necessarily accompanied with natural selection [1]. In bio-molecular
evolution, for example, proteins often have amino acid sequences with
low sequence identity (< 20%) mapping to the same protein fold or 3D
structure [11]. Such evolutionary degeneracy helps to maintain the
activity-stability trade-of in proteins, wherein, the strategic sequence
variation is so fine-tuned that there is scope to impart new additional
functionalities without having to compromise the mother-function of
the particular class of proteins [12,13]. Such ‘low sequence identity
same fold pairs’ fall into the twilight and midnight zones [14,15] of
protein sequence alignment, appreciably boosting the complexity of the
‘protein fold recognition’ [15–17] problem.

Proteins serve as the prime functional biomolecule of life per se.
Their functions vary across a wide range from serving as enzymes in
biocatalysis, signal transducers, transporters, molecular motors, pro-
viding elasticity to soft tissues like hair (fibrous proteins like keratin),
tensile strength as well as flexibility to the muscle (collagen) [18], in
the essential construction of the cytoskeleton (lamin [19]), acting as
channels, gateways, molecular filters (membrane proteins [20]) and
many more. Other than the special class of anchored (i.e., membrane
proteins) and fibrous proteins, they generally remain in the cytosol as
molecular globules (globular proteins) engaged in a certain type of fold
(i.e., their 3D structural getup) consistent with their specific (routine)
function. This gives birth to the classical view of protein folding con-
sistent with the 'sequence–structure–function' paradigm. In contrast,
there are multi-functional proteins as well, wherein, different parts of
the protein 3D structure (e.g., domains, active and allosteric sites) serve
to implement the few functions they are evolved to deliver. While, these
molecular evolutionary strategies serve to construct the general rules of
the protein structure-function paradigm, another variant has recently
been discovered in the protein world, namely, fold-switch proteins [21]
which switch between (a few) folds to support more than one func-
tionality, generally induced by their chemical environment [22].
However, in all these cases, the notion of functional multiplicity only
varies within a few types of ‘well defined’ functions, structurally not
allowing the protein(s) the scope and robustness to execute sudden
emergency ad-hoc functionalities as may be required contextually.
Along with the increasing complexity in living systems with time
(especially relevant for the modern human race) the demand of func-
tional multiplicity has increased in a proportionate manner. In-
trinsically disordered proteins (IDP) [23], yet another relatively recent
member of the protein family, a product of ever-increasing micro-evo-
lutionary stress, has been revealed, unmistakably to have the potential
to perform a various kind of functions to serve in such complex scenario
[24], even unprecedented at times, characterized by their ‘unusual’ and
‘mysterious (meta) physics’ [25–28]. This great functional potentiality
in these molecules is due to their inherent structural plasticity [29] and
enormous amount of physical flexibility [29,30], characterized by their
being present in conformational ensembles rather than one or two
single fold(s) [31] throughout their entire life-span. Such conforma-
tional ensembles are further characterized by a population of structu-
rally degenerate states, transitions between which are found to be
ranging in tenths of Å to nm in length and ns to s in time-scale in
proteins. Such multi-scale phenomena are essential for the proposed
multi-functionality (even in the case of globular proteins, engaged in
more than one function, say, allosteric signaling). Hence, it is important
from a theoretical as well as a medical perspective to understand the
phase transition phenomena among different degenerate states in in-
trinsically disordered proteins. In this paper, different degenerate states
(represented by average temporal2 structures) of a collection of in-
trinsically disordered proteins are captured from molecular dynamics
(MD) simulation data using clustering analysis. This was followed by
the implementation of statistical physics and phase transition dynamics
to capture the equilibrium populations of the states. A major emphasis

has been put to ‘criticality’ which potentially relates to conformational
degeneracy and functional multiplicity of these proteins.

The criticality hypothesis in phase transition dynamics refers to a
system that may be poised in a critical state at a boundary between
different dynamic manifolds characterized by its phase. Self-organized
criticality (SOC) refers to the property of a large-scale dynamical sys-
tems where critical points also play the role of an attractant, such that
the collective behavior shows some invariant characteristic of phase
transitions in terms of the critical point without controlling parameter
values. These types of systems are found to exhibit marginally stable
behavior, effectively tuned towards criticality itself as it evolves,
wherein, the event size obey a characteristic power-law distribution
[32–35]. The example of SOC ranges from the simple geophysical
phenomenon of piling sand to sophisticated phase transition in neural
dynamics and brain functioning mechanism. The typical example of
SOC is found in non-equilibrium non-linear systems with high degree of
freedom. The concept was first introduced by Bak et. al., in a paper [32]
in 1987 and is well accepted as a possible mechanism of emergence of
complexity in Nature. This was followed by some studies by Tang and
Bak on scaling relation [33], mean field approximation [34] for SOC
and relation of complexity with criticality [35]. Quickly these concepts
were successfully applied across several fields of complex dynamics
such as geophysics, Plasma physics and cosmology, quantum gravity,
sociology, ecology, evolutionary biology, neurobiology [36–38], eco-
nomics, optimization, bio-inspired computing [39] and many others.
Consequently the concept of SOC was applied to several other fields of
natural complexity, which has been already evident for emergence of
scale-invariant behaviors in large-scale physical or social systems. SOC
was found to be successful to explain and analyze several complex
systems and phenomenon like earthquakes, landscape formation, forest
fires, solar flares, landslides, epidemics, fluctuations in economic sys-
tems such as financial markets, neuronal avalanches in cortex [37,40],
biological evolution, 1/f noise in the amplitude envelope of electro-
physiological signals [36] etc. These studies on SOC include attempts to
model the dynamics as well as extensive data analysis to determine the
characteristics and condition for existence of natural scaling laws. Also
several recent studies have shown to evolve scale-free networks as an
emergent phenomenon in SOC [41]. On the contrary, other researches
on the solvent-accessible surface areas of globular proteins suggest that
SOC exist independently of any physical space or dynamics [42]. Also
quantification of the differential geometry of proteins from the SOC in
its structural dynamics resolves many unsolved questions regarding the
biological emergence of complexity [43].

In this paper, we focus on the characterization of criticality in the
context of conformational phase transition in IDPs based on their time-
evolved atomic coordinates (i.e., MD simulation trajectories). Structural
phases of the IDPs are estimated through the MD simulation trajectories
based on their similarities and clustering. Phase transition dynamics
between these phases are studied, in a sense, that they could represent
the complex nonlinear dynamics of biological soft matters. This analysis
is further coupled and complemented with the study of salt-bridge
dynamics - which has previously been revealed [44] to serve as a me-
ticulous mechanism to retain the characteristic physical flexibility in
these proteins, abundant in charged amino acids. Taking an important
bold step forward, the current study attempts to use ‘salt-bridge dy-
namics’ as a probe to investigate the scope of SOC in the conformational
phase transition among self-similar groups in IDPs. Subsequent analyses
shows the ‘salt bridge formation’ phenomenon in IDPs can be con-
sidered as a critical phenomenon in the course of their dynamics. In
more elaborate terms, salt bridge formations serve as critical points or
attractants in the complex nonlinear dynamics of IDPs – which is a
trademark of SOC in known natural systems. Furthermore, the dis-
tribution of salt bridge persistence is found to follow power law with
fractional exponent. This is a well characterized signature of SOC
[45,46] and physically refer to differential geometries in the structure
of the highly dynamic biological soft matter (IDPs). The study should2 For a period of time / time dependent / time-related - used contextually.
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potentially serve as an essential footstep in the plausible control of
protein functionality and in the design of biotherapeutics particularly
relevant for neuro-degenerative disorders given rise by malfunctioning
IDPs [47,48].

2. Materials and methods

2.1. Selection of IDPs

Idp's chosen for the current study were kept precisely the same as
that of an earlier study [44], wherein, four proteins were chosen with
their degrees of structural disorder varying from 43 to 100% in their
native states. Two partially disordered proteins (IDPRs), namely, the
scaffolding protein GPB from Escherichia virus phix174, (PDB ID:
1CD3, chain ID: B) and the human coagulation factor Xa, (PDB ID:
1F0R, chain ID: B) along with two completely disordered proteins
(IDPs), namely, α-synuclein (α-syn) and amyloid beta (Aβ42) were
chosen to construct the set. The sequences of the IDPs were obtained
from the DISPROT database [49]. For 1CD3, 1F0R their X-ray structures
(resolution: 3.5 Å & 2.1 Å respectively) were obtained from the Protein
Data Bank (PDB) [50]. The missing coordinates corresponding to the
disordered regions were identified by comparing the SEQRES and
ATOM records in their corresponding PDB files. The final atomic
models were obtained from the earlier study after the disordered re-
gions in 1CD3, 1F0R along with the full-length sequences of the com-
pletely disordered proteins (α-syn, Aβ42) were built using MODELLER
[51].

2.2. Molecular dynamic simulation

A new improved protocol compared to those of the earlier studies
[44,52] was adapted for performing the explicit-water Molecular Dy-
namics (MD) simulation for the chosen set of IDPs, wherein the pro-
duction phase was made to run for a 5-fold longer period of time (500
ns) in GROMACS v.2018.1 [53,54] using the latest available force-field
GROMOS96 54a7 [55] associated with the MD package. Periodic
boundary conditions were used with the SPC [56] water model re-
commended for all available GROMOS96 force-fields. Solvation and
charge neutralization of the proteins were subsequently followed by
two rounds of energy minimization (in staid of just one round used in
earlier studies [44,52]) using the in-built PROMD module [54] within
GROMOS96. In the first round, 200 steps of the relatively much faster
steepest descent method was used wherein atoms are moved so as to
reduce the net forces on them leading to an instantaneous freezing of
the system. This was followed by 19800 steps of the more productive
conjugate gradient method to remove unfavorable steric interactions.
The energy minimized protein – solvent system was then equilibrated in
an NVT ensemble followed by an NPT ensemble for 100 ps and 5 ns
respectively. The initial temperature set for the NVT ensemble was 100
K which was gradually raised to 300 K at constant volume and was kept
the same for the entire NPT equilibration while the pressure maintained
at 1 bar. The production run of the MD simulation was done in an NPT
mode for 500 ns with a time step of 2 fs for each equilibrated protein –
solvent system. To maintain constant temperature, Berendsen's tem-
perature bath was used with a coupling constant of 2 ps, while barostat
with a coupling constant of 1 ps was used to regulate the constant
pressure. Trajectories were written at an interval of 2 ps, resulting in
2,50,000 frames (or time-stamps). All analyses were performed on the
post-equilibrium 500 ns long trajectories (for all four proteins).

2.3. Identifying salt-bridges

As is standard in protein-science literature [44,57,58], ionic bonds
within IDPs were detected when a positively charged nitrogen atom
from the side-chains of lysine, arginine or positively charged histidine
were found to be within 4.0 Å of a negatively charged side-chain

oxygen atom of glutamate or aspartate.

2.4. Clustering of MD Simulation data based on RMS distances among the
snapshots

Let the simulated MD trajectories be split from time-step 1 to time-
step n + nt, wherein, the first nt steps are considered to be in transient
phase and are removed to get the structural conformations in the final n
steps. Let, A be an n×nmatrix where A = (aij)n×n where aij are the root
mean square (RMS) distances between the conformations obtained at
ith and jth time-steps. Also, let, B be the associated adjacency matrix
where the structures at ith and jth time-steps are connected (or ad-
jascent), if their distance is found to be less than a pre-defined threshold
(θ). Furthermore, the structures considered as nodes of the adjacency
matrix were sorted according to their degree (i.e., the number of
structures connected to a particular structure or node). Let I be the
sorted list of structures, CC be the list of representative (average)
structures defined as the cluster centers and CN be the list of cluster
numbers for each structure denoting the cluster in which the structure
belongs to. In the present study, θ was set to 5Å and 7.5Å respectively
for 1CD3 and the rest of the three IDPs, considering their relative
abundance (and scarcity) of ordered secondary structural (particularly
helical) content (see Section 2.1. Selection of IDPs) coupled with pre-
vious knowledge of relative instability of the proteins [44,52].

The adjacency matrix B can be represented mathematically as the
following.

∑= = ⎧
⎨⎩

<
= =× × =

B b b
ifa θ
otherwise

BS β β b( ) ,
1,
0,

, ( )ij n n ij
ij

i n i j

n
ji

1
1 , 1

The clustering is done by the following algorithm.
Push first element of I into CC
For step i=2 to n
Push I(i) into CC if distance between all structures already in CC and the

structure at time step I(i) be greater than θ.
Generate m cluster centers.
For step i=1 to n
Each structure is assigned a cluster number according to the cluster

center that lies at the minimum distance from the structure,
i.e., = =

= …
CN i CC j min a CC k i a CC j i( ) ( ): ( ( ), ) ( ( ), ).

k m1,2,
Now, the transition matrix TM is generated such that

TM = (tmij)m×m where tmij represents the number of times the structure
was found in CC(i) at the previous time-step and in CC(j) at the next
time-step.

The transition probability matrix M is obtained by dividing every
element of TM by its corresponding row sum, i.e.,

= =× ∑ =
M μ μ( ) ,m m ij

tm
tm
ij

i
m

ij1
. These m structures in CC are considered to

be m different average structures or states of the time-evolved biomo-
lecule.

2.5. Efficiency of clustering

The aforementioned adjacency matrix B can be interpreted in terms
of a graph, G=(V,E) having V as its set of vertices and E as its set of
edges. The clustering efficiency of G could be determined by the clus-
tering coefficient computed from B in the following way.

In the graph G, if the vertices vi and vj are connected by an edge,
then the corresponding element of B, bij will be 1 or 0 otherwise. The
neighborhood Ni of vertex vi is defined as its immediately connected
neighbors as Ni = {vj : bij = 1, i, j = 1,2,….,n}. Also, let, ki denote the
number of vertices in the ith neighborhood, i.e. |Ni| = ki. The local
clustering coefficient Ci for a vertex vi is then given by the proportion of
links between the vertices within its neighborhood divided by the total
number of links that could possibly exist between them. For an un-
directed graph G, the local clustering coefficient of its ith node, Ci can
then be defined as follows.
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All Ci's in a graph can further be averaged to return the average
clustering coefficient (C) of the graph.

Also, the edge density within the clusters and that in between dif-
ferent clusters gives a good estimation of clustering efficiency of any
clustering scheme. We define an ordered parameter op as the ratio of
the intra-cluster edges and the total number of edges, i.e.

=op
Number of edges within clusrers

Total number of edges

op will trend towards 1 as the clustering scheme becomes better in
the sense that a greater proportion of edges become intra-cluster.

2.6. Phase transition

In the context of the time-evolved structures of IDPs (obtained from
their MD simulation trajectories), several self-similar conformations
could be considered as different structural phases of these molecules
and their intrinsic disorder could be explained as the transition dy-
namics among these different phases. In this paper, self-similarities in
structural conformation of IDPs are grouped on the basis of their re-
lative deviations and is aided in the formation of the conformational
clusters which could be interpreted as structural phases of these bio-
molecules. Hence, the intrinsic disorder of IDPs could be explained by
the phase transition dynamics among m different phases which could be
parameterized by the transition probability matrix M directly obtained
from the MD simulation trajectories.

Let, p(i, t), i = 1, 2, …, m be the probability that the biomolecule is
in structure CC(i) at time t and P(t) = (p(1, t),p(2, t),…. p(m, t))T. Then
the phase transition dynamics could be written as follows:

∑+ = = …
=

p i t δt M p j δt i m( , ) ( , t) , 1, 2, ,
j

m
ij1

⇒ + − = = −P t δt P t RP t δt R M I( ) ( ) ( ) , m

⇒ + − = ⇒ =
→

lim P t δt P t
δt

RP t dP t
dt

RP t( ) ( ) ( ) ( ) ( )
δt 0

Im is the identity matrix of order m. Row sum of each row of M is 1,
thus R is a matrix with zero row sums. Hence R has a fixed Eigenvalue
zero and the stability of the dynamics is determined by its largest
Eigenvalue. Also,
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Hence, the sum of all probabilities remain unchanged and P forms a
simplex in phase transition between m states.

2.7. Analysis of salt-bridge persistence

Again, a similar protocol was adapted from the earlier study [44]
with only minor contextual variations. As was done before, simulated
conformations were collected at an interval of 50 ps across the entire
500 ns MD trajectory for each idp, resulting in 10000 protein con-
formations spanning the entire length of trajectory. Each trajectory was
then split into clusters based on RMS deviation (as detailed above) and
in each of these resulting clusters, the dynamic persistence (pers) of a
particular salt-bridge was calculated as the ratio of the number of
protein conformations to where the salt-bridge was found to form with
respect to the total number of conformations in that cluster. Even a
single occurrence of a salt-bridge in a given cluster was considered

accountable in this analysis. Normalized frequency distributions of salt-
bridge persistence were plotted for each cluster from these raw dis-
tributions (to be discussed in the next section). To figure out the re-
presentative ‘persistent’ salt-bridges in each cluster, a cut-off of 25%
(i.e., pers ≥ 0.25: a salt-bridge found in at least 1/4th of all sampled
frames in a cluster) was considered optimum (as standardized in an
earlier study [44]) and applied.

2.8. Test of scale-freeness – signature of criticality

Scale-freeness indicates criticality [32,33] in phase transition,
wherein, a system smoothly traverse around multiple unstable steady
states. A system here could either be a physical or a chemical or a
biological or any other complex system. For example, in the context of
neural discharge of neurotransmeters, burst size is known to give sig-
natures of scale-freeness in brain disorders (epilepsy for example)
[38,40] as its distribution follows power-law with an appropriate ex-
ponent. To test an equivalent scale-freeness, an analogous analysis was
adapted in the current study by studying the distribution of salt-bridge
persistence in each cluster. No persistence cut-offs were used in this
analysis, the entire numerical range of persistence (pers) values [0, 1]
was binned in bin-size of 0.1 and normalized frequencies (nf) of salt-
bridges with a given width of persistence (corresponding to a certain
bin) were computed and plotted in a log-log plot (i.e., logarithm of
normalized frequency in Y-axis as a function of persistence in X-axis:
log(nf) vs. log(pers)). The bins with zero occupancy when converted to
the log count gives a negative infinity (-Inf). For such instances, the
‘-Inf’ were replaced by contextually determined arbitrarily large nega-
tive finite values based on the range of obtained finite log(nf) values,
for that given plot. Linear least-square fitting was performed on these
experimental points, the R2 (coefficient of determination), fitting errors
(root mean square deviation of the same) and the slope of the fitted
straight-lines were recorded.

3. Result and discussion

3.1. Clustering: identification of conformational phases and phase
transitions

The prime focus of the study was on the analysis of structural de-
generacy of disordered proteins (from their MD simulation trajectories)
and therein the characterization of conformational phases and transi-
tions between them. Four representative IDPs, namely, 1CD3, 1F0R, α-
syn and Aβ42 were selected for this purpose, the first two being par-
tially and the next two being completely disordered. In the perspective
of structural degeneracy of IDPs, it is important to identify the self-
similarities of different structural conformations and club them into
appropriate groups to classify all these conformations into few identi-
fiable clusters. Here, different structural conformations of IDPs (as ob-
tained from MD simulation) are categorized in several groups based on
their dissimilarities that can be measured from their RMS deviations.
These structural groups or clusters serve the purpose of characterization
of the overall molecular dynamics in terms of few representative
structural ensembles and are considered as dynamical phases in the
molecular dynamics of corresponding IDPs. The phase transition dy-
namics are, hence, studied to analyze the persistence and long term
behavior of the corresponding IDPs to retain them as a collection of
representative structural conformations. The structural phases of these
IDPs are thus derived as conformational clusters based on RMS dis-
tances between conformations by clustering analysis as elaborated in
the Materials and Methods. The transition probability matrix for each
IDP is extracted from MD simulation data. The phase transition dy-
namics are simulated for individual IDPs and the persistence of these
phases or conformational clusters are analyzed therein. The fixed point
or equilibrium in phase transition dynamics is obtained in terms of
probability of attaining the aforementioned representative structures
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which could be interpreted as steady state persistence of each con-
formational cluster.

For 1CD3, three different structural conformations were found with
their cluster centers obtained at time-stamp 154130, 249130 and
207505 where the corresponding equilibrium (or fixed point) in terms
of probabilities (P) of attaining a representative structure were found to
be 0.5433, 0.2585, and 0.1982 respectively. These probabilities can be
presented as an array P (e.g., P=[0.5433, 0.2585, 0.1982]) with their
elements adding up to 1. Similarly, for 1F0R, six different structural
conformations were found with cluster centers at time-stamp 231130,
143755, 175380, 105130, 92505 and 214005 with the corresponding
probability array as P=[0.3239, 0.1807, 0.1379, 0.1159, 0.1998,
0.0418]. For α-syn, five different structural conformations were found
with cluster centers obtained at time-stamp 221505, 116255, 255005,
191630 and 135880 with P=[0.3706, 0.2145, 0.1556, 0.0857, 0.1736]
while for Aβ42, six different structural conformations were obtained
with cluster centers at time-stamp 210505, 120755, 190380, 134630,
216880 and 126005 with P=[0.3731, 0.1042, 0.0731, 0.2684, 0.1152,
0.0661].

Following the mathematical part of the clustering analysis, visua-
lizations were subsequently done (Fig. 1, 2) by (i) superposing the
cluster centers (left panels of Fig. 1, 2) leading to a reduced re-
presentation of the degenerate structural ensembles of the IDPs and (ii)
also looking at them individually (right panels). The efficiency of
clustering (or clustering efficiency) could be evaluated as the value of
the ordered parameter (op) (see Materials and methods) which has been
derived and obtained as 0.5488, 0.8349, 0.7424 and 0.9506 respec-
tively for 1CD3, 1F0R, α-syn and Aβ42. The average clustering coeffi-
cient (C) of the associated network (see Materials and methods) gives a
measure of how densely the clusters are packed. C was obtained to be
0.7836, 0.5818, 0.5948 and 0.5358 respectively for 1CD3, 1F0R, α-syn
and Aβ42. From these numbers, it is evident that 1CD3 (among the four
IDPs) has the least amount of structural degeneracy for having the
lowest clustering efficiency (op) and the highest average clustering
coefficient (C) in the whole set. That is to say that the structural con-
formations for 1CD3 are relatively more self-similar to each other. This
is perhaps meaningful as 1CD3 is the protein that has the highest sec-
ondary structural as well as helical content (Fig. 1) among the four IDPs

(see Materials and methods) and can therefore be interpreted as the
closest (out of the four) to the class of globular proteins. Interestingly,
the other partially disordered protein, 1F0R has far more structural
diversity wherein the conformations are substantially different from
each other, as reflected from its much lower clustering coefficient
matching to the order to those obtained for the completely disordered
proteins. Six different conformational phases describe the structural
diversity in 1F0R and the relatively higher value of clustering efficiency
(op) suggests that there is little structural resemblance among its con-
formational clusters or in other words the conformations within each
cluster are more self-similar. These behavioral difference of the two
partially disordered proteins, 1CD3 and 1F0R can also be interpreted
from the perspective of the different type of salt-bridge formation in
them, to be discussed in the next section.

On the other hand, the completely disordered proteins, α-syn and
Aβ42 naturally have substantial diversity in their structural con-
formations as reflected from their corresponding lower values of clus-
tering coefficients. Among these two completely disordered proteins,
Aβ42 has been classified into six conformational clusters (phases)
which are fairly diverse from each other, wherein, the phases show a
high degree of self-similarity within themselves (and higher than that of
the other three proteins) as suggested by the highest value of its clus-
tering efficiency (op) in the set. In case of α-syn, the value of clustering
efficiency (op) is moderately high which suggests that α-syn also has
fairly diverse structural conformations, wherein, the segregation of
these conformations into five different phases are fare. These observa-
tions can be extended to infer that the molecular dynamics of α-syn is
more continuous in nature than Aβ42 and the difference between self-
similar groups in the former is relatively less. Overall, from this analysis
we can conclude that 1CD3 has the most regular structure among the
four, α-syn has a fairly diverse structure yet a continuous transition
behavior, while 1F0R and Aβ42 both have proper diverse structural
phases with substantial self-similarity among the conformational
phases.

To understand the relative intensities of the conformational phases
along time, the time-evolution of the probabilities of attaining different
states or conformational clusters were plotted together (Fig. 3). The
equilibrium values of these probabilities were presented in the

Fig. 1. Upper Row: Structural conformations of 1CD3. The conformational clusters (phases) represented by the corresponding cluster centers: a) C1, b) C2, & c) C3
with time-stamp 154130, 249130 & 207505 respectively presented individually on the right and superposed on the left. Lower Row: The same for 1F0R: a) C1, b) C2,
c) C3, d) C4, e) C5 & f) C6 with time-stamp 231130, 143755, 175380, 105130, 92505 & 214005 respectively.
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aforementioned array P. Here, it is interesting to find that ~55% of the
population ensemble for 1CD3 solely represent its first conformation,
C1. For 1F0R, the first two conformations, C1 and C2 add up to more
than half of its population ensemble. Similarly, almost sixty percent of
the population ensemble for α-syn map to two of its most populated
conformations: C1 and C2 while more than sixty percent of the popu-
lation ensemble for Aβ42 are distributed between C1 and C4. This give
a nice structural insight into the conformational degeneracy of these
IDPs which could be interpreted in terms of few representative con-
formations.

3.2. Transient salt-bridge dynamics

The transient nature of salt-bridge dynamics, or, in other words, the
flitting character of ephemeral salt-bridges across the whole protein
chain was previously revealed [44] to be crucial in retaining the con-
formational flexibility of disordered proteins. This, in turn, was found
to be essential (at least in-silico) for such protein functions (in the
binding of their globular partner proteins). From a mechanistic point of
view, it was further revealed that these salt-bridges consisted of charged
atom pairs continuously changing their ionic-bond partners and thereby
collectively supporting different conformations. The mechanism thus
functions as a ‘conformatonal switch’ in the context of idp-dynamics.
Again, being evolved primarily as a ‘structural’ switch, the phenomenon
has the potential to turn on another ‘functional’ switch from the ‘intra-’
to ‘inter-chain’ salt-bridges in the idp when its (globular) binding
partner become available and accessible for binding. As a matter of fact,
it is largely the short-lived salt-bridges of the idp (i.e., the ‘intra-chain’

salt-bridges) which collapses momentarily before concomitantly re-
uniting with charged groups coming from its globular partner (giving
rise to formation of the ‘inter-chain’ ones) as they remain functionally
far more open-ended and amenable as compared to the persistent salt-
bridges of the idp. Overall, the transient salt-bridge dynamics in IDPs
potentially serves as an initiation and stabilization mechanism for
protein-protein binding in the context of an idp and its globular partner.

For the current study, salt-bridges were first identified in each
conformational cluster and their persistence computed in that cluster.
Likewise that of the earlier study [44] even a single occurrence of a salt-
bridge in a cluster was considered important and recorded. The overall
trends of the distributions of salt-bridge persistence (i.e., frequency vs.
persistence) were found (Fig. 4) reasonably similar to the one obtained
for the entire trajectory [44], wherein, persistence bins above the cut-
off of 0.25 (which was the previously standardized threshold to define
‘persistent salt-bridges’ [44]) were found to be roughly equally popu-
lated, followed by a long raised tail (left-peak in the plot) comprising of
a high fraction of short-lived salt-bridges. The distributions visually
resembled power series decays along the direction of increasing per-
sistence and could best be fitted to rectangular hyperbola's (y=k/x)
where the proportionality constants (k) were determined based on the
scale of the Y-axis. From the distributions, it was clear that, in each
cluster, there were some persistent salt-bridges (potentially re-
presentative of that conformation) along with a large fraction of flitting
salt-bridges over the whole chain, analogous to the invariant and
variable parts of an equation respectively. It was also realized that to
switch to another conformation (or conformational cluster) the protein
has to undergo modulation in the two types of salt-bridges (persistent

Fig. 2. Upper Row: Structural conformations of α-syn. The conformational clusters (phases) represented by the corresponding cluster centers: a) C1, b) C2, c) C3, d)
C4 & e) C5 with time-stamp 221505, 116255, 255005, 191630 & 135880 respectively presented individually on the right and superposed on the left. Lower Row: The
same for Aβ42: a) C1, b) C2, c) C3, d) C4, e) C5 & f) C6 with time-stamp 221505, 116255, 255005, 191630 & 135880 respectively.
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and ephemeral) at different degrees. In other words, for persistent salt-
bridges, some of them may remain common or conserved between two
or more conformational clusters, while the others may vary, and, the
ubiquitous presence of the ephemeral salt-bridges across the dynamic
protein chain may simply provide the matrix (acting as if like a buffer)
to switch between conformations. That is to say that during this con-
fromational switch, one or more persistent salt-bridges may break open
and be replaced by other newly formed persistent salt-bridges while the
ephemeral salt-bridges may simply rearrange themselves to fit the new
conformation.

The presence of the conserved salt-bridges across conformations
(some of them even across the whole MD trajectory) is meaningful and
important, since, even IDPs in water (or in the cytosol) does not remain
as completely extended elongated random coils or ‘ideal chains’3 rather
undergo sequence dependent dynamic bending (primarily due to ex-
tensive electrostatic interactions throughout the whole chain). Hence,
likewise the globular proteins, they too are physically restricted by
some amount of local rigidity as imparted by short-range persistent salt-
bridges by often creating fairly stable loops and turns (sometimes even
a short helix as is the case of Aβ42). Such constraints make them
structurally approach porous globule – as was reflected from their
shape factor profiles [44]. Broadly speaking, the short-range (sequence
separation of less than ten amino acids) persistent salt-bridges thus
could be envisaged essential for their basic time-evolved structural
getup. On the other hand, the long or medium ranged salt-bridges

across time can potentially give an idp its desired variation in structural
identity across conformations, by preferring to form and remain per-
sistent within certain conformational clusters while remaining absent in
the others. The third prototype, a large abundance of the ephemeral
salt-bridges form and collapse momentarily in each conformational
cluster, providing the necessary conformational entropy and flexibility
required (even) within a cluster.

The Persistence vs. Contact Order profile (individually as well as
when merged for all clusters, Fig. 5) also largely followed a power series
decay and could best be fitted to a rectangular hyperbola – meaning
that the (high) persistent bins of salt-bridges were more populated with
short-range than long-range contacts while the ephemeral salt-bridges
had no such contact order preferences. To make a comprehensive test of
the above hypothesis, the Contact Order (CO) vs. Persistence of salt-
bridges were plotted individually for each protein twice: (i) for their full
MD trajectories (represented by black open circles in Fig. 5) and (ii) for
individual clusters (blue dots in Fig. 5). Here, in this figure, it is to be
carefully noted that points in Fig. 5 having the same abscissa (CO) and
only differing within a narrow range of their ordinate (pers) actually
correspond to the same salt-bridge. Among such a cluster of points, the
encircled point correspond to the whole MD trajectory which only get
split into different conformational clusters. We can consider the whole
range of salt-bridges categorized into three classes (i) long range per-
sistent salt-bridges (ii) short and moderate range persistent salt-bridges
and (iii) ephemeral (i.e., short-lived) salt-bridges. The former class was
found to be only little populated (occurred just twice for the two par-
tially disordered proteins: 1CD3, 1F0R) while the later was heavily
populated (with virtually no correlation with contact order) adding to
the conformational entropy (as discussed earlier in this section). The

Fig. 3. Simulated phase transition dynamics presented by the probabilities of attaining different states with respect to time for the four IDPs: A) 1CD3, B) 1F0R, C) α-
syn & D) Aβ42. The simulations were done till equilibriation of the dynamics with a non-dimensionalized time-scale. The time axis is presented in arbitrary units.

3 Ideal chains in polymer science are characterized by a theoretical shape
factor of 1.5
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second class having the highest X-width (i.e., persistence range) was of
prime importance, wherein, persistence generally followed an inverse
trend with respect to contact order. From a structural perspective, this
class of salt-bridges appears to be potentially important for (a) creating
small to moderate lengths of ‘loops and turns’ in the protein at different
temporal phase and (b) remaining intact in/across conformation(s)
(some of them even throughout the whole MD trajectory). They
therefore impart a varying degree of local temporal structural con-
straints to the protein, which, in turn, collectively contributes to its
unique 3D conformational getup corresponding to the cluster(s). It
naturally follows that these may be envisaged as representative salt-
bridges for the cluster(s).

Looking closely into the two instances of long range persistent salt-

bridges, they were found to represent two opposite end of the spectrum
of possible molecular dynamic events. The one in 1CD3 (2-Glu ~ 108-
Arg) had an overall persistence of 0.819 (the only encircled point in
Fig. 5 panel A, right-top part of the plot) for the whole MD trajectory
varying only from 0.747 to 0.864 among the three conformational
clusters in the protein. Here we must recall the fact that the protein is
partially disordered, having the highest percentage of secondary
structural content: 56.7% [44]. From a detailed structural view (Fig. 6),
the salt-bridge was found to form between two anti-parallel beta
strands coming from the two termini (N' and C'-) which remain intact
throughout the entire course of its dynamics, bringing and retaining the
two end of the protein in close proximity and giving the protein its
desired dynamic bending. The case therefore represents a salt-bridge

Fig. 4. Distribution of salt-bridge persistence plotted for the first clusters (C1) of A) 1CD3, B) 1F0R, C) α-syn & D) Aβ42. The distributions could best be fitted to
rectangular hyperbola's.
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mediated long range secondary structural association which is a con-
served structural feature of the protein along the dynamics of its con-
formational variations.

The other long range persistent salt-bridge found in 1F0R (Fig. 7)
represented an exactly opposite case. Here the salt-bridge (41-Asp ~
129-Lys) persisted only briefly (pers: 0.084: i.e., 8.4% of the time) with
respect to the whole MD trajectory wherein it primarily supported two
conformations (cluster-4, 5 with pers: 0.446, 0.133) persisting almost
half the time in one of the two clusters (cluster-4) and one eighth in the
other (cluster-5), while, its appearance in the rest of the clusters

(cluster-1, 2, 3, 6) were virtually of flitting nature (pers: 0.002, 0.019,
0.018, 0.012). Clearly this is a representative case of conformational
preference of a salt-bridge having a long range contact order (i.e.,
bringing together two far-apart regions of the disordered chain tem-
porally for certain phases). Hence, this salt-bridge is exemplary to de-
monstrate the case of a representative salt-bridge particularly for
cluster-4 in 1F0R.

Fig. 5. Persistence (pers) vs. Contact Order (CO) profiles for the IDPs. Persistence values for the full MD trajectories are represented by black open circles while the
same for individual clusters (i.e., ‘cluster persistence’) are presented as blue dots.

Fig. 6. The long range persistent salt-bridge in 1CD3 demonstrating a case of a salt-bridge mediated long range secondary structural association.
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3.3. Representative Salt-bridges for conformational clusters

As standardized earlier [44], a persistence cut-off of 0.25 (25%) was
used to define the ‘high’ persistent salt-bridges. Among the persistent
salt-bridges found in each conformational cluster (for each protein)
there were virtually two prototypes: (1) those persisted in all or most
clusters (i.e., throughout the whole MD trajectory) and (2) those per-
sisted in certain individual cluster(s). It naturally follows that the first
prototype would give rise to high ‘overall’ persistence values (i.e.,
persistence calculated for the whole MD trajectory) which would gen-
erally decrease for the second. The first prototype of salt-bridges are
therefore dynamically conserved in the idp, imparting general struc-
tural constraints, ‘common’ to all possible conformations while the
second represents ‘unique’ temporal constraints particular to certain
coformation(s).

As it turned out to be, the average persistence of salt-bridges com-
puted cluster-wise (let's call it cluster-persistence) were found to be
much higher for the aforementioned ‘common’ prototype in comparison
to the ‘unique’. A thorough statistics of the data further revealed that
the average persistence of a salt-bridge generally increased with its
cluster-occupancy (i.e., the number of confomational cluster the salt-
bridge is found to be present in, with a ‘high’ persistence). This is
perhaps reasonable, though not obvious, since, here, the analysis is
based on cluster-persistence (i.e., persistence calculated per cluster),
rather than overall persistence (i.e., persistence calculated for the whole
trajectory). To elaborate the above point, let's assume the case of a salt-
bridge found to be present throughout a particular cluster but absent
otherwise across the (rest of the) MD trajectory. Such representative
salt-bridges ‘unique’ to single conformational clusters would have re-
tained really high cluster-persistence for the given cluster. In reality,
the highest cluster-persistence for this category of salt-bridges (‘unique
to a single cluster’) was found to be no more than 0.589 (for the salt-
bridge 4-Lys ~ 9-Glu in 1F0R), followed by 0.560 (for 16-Lys ~ 22-Glu
in Aβ42), and, 0.495 (for 32-Lys ~ 98-Asp in α-syn) while the average
cluster-persistence was found to be 0.367 (± 0.115) over 14 such
‘unique to single cluster’ instances of salt-bridges found across the four
IDPs (Table 1). On the other hand, for salt-bridges found at high cluster-
persistence among all clusters or throughout the whole MD trajectory
(the so called ‘common’ prototype) of salt-bridges, the same average
was found to be 0.684 (± 0.205), again, for 14 instances.

The degree of structural variation among the conformational clus-
ters (or, in short, conformational variation) was estimated by the
average of the pairwise root mean square deviation in Cα atoms be-
tween central conformations representative of each cluster. Overall,
conformational variation among clusters in an idp was found to follow
an inverse trend with the fraction of its ordered secondary structural
content, also constrained by the number of representative salt-bridges
in it. In other words, less number of salt-bridges and lesser degree of
secondary structural content imparted more variation among the

conformations. 1CD3, being the idp with the highest secondary struc-
tural content (56.7%) had the least variations (5.731±0.127 Å) among
its three conformational clusters, constrained by 15 representative (7
common + 8 unique) salt-bridges. Furthermore for having two fairly
long helices, the three clusters had clear visual resemblance in their
overall shape wherein the variation indicated extensive movements of
disordered loops connecting the helices, triggered and constrained by
the representative salt-bridges. Interestingly, in spite of being a par-
tially disordered protein and having as many as 23 representative salt-
bridges, 1F0R (among the four IDPs) exhibited the highest structural
variation (10.850±3.00 Å) across its conformational clusters (also
reflected visually, Fig. 8). This apparently anomalous feature can be
explained by the abundance of anti-parallel beta strands rather than
helices as secondary structural elements in the protein chain resulting
in a corresponding local clustering of the representative salt-bridges at
different structural regions of the dynamic chain. It is a well known fact
in protein science that proteins containing greater beta sheet content
undergo far more severe deformations [59,60] than helical proteins, for
beta sheets (and strands) are structurally less stable and geometrically
less ordered than helices for more than one reason: (i) beta sheets get
stabilized by inter-chain hydrogen bonding as compared to intra-chain
for helices and therefore are not self-sustainable like helices (ii) the
influence of the backbone N-Cα -C (τ) bond-angle variation is much
more pronounced in beta sheets compared to helices. For the com-
pletely disordered proteins, Aβ42 had a slightly higher degree of con-
formational variation (10.042±2.389 Å) than α-syn (8.500± 1.840
Å). Aβ42 is constrained by a brief dynamic appearance of a small helix
and only 4 representative salt-bridges, wherein, the conformations in-
dicated open ended free movements of the overall protein chain, also
contributed by its much smaller length (42 amino acids). On the other
hand, α-syn did not give rise to any appreciable secondary structural
presence in any of its conformations and were constrained by 9 re-
presentative salt-bridges. The much larger length (140 amino acids) of
α-syn as compared to Aβ42 also potentially contributes to the lesser
degree of variation in the former as it significantly enhances the in-
fluence of electrostatic interaction globally throughout the structure
making the chain dynamically bent and concomitantly decreasing the
scope and extent of open ended free movements (likewise to that of
Aβ42).

3.4. Scale-freeness and criticality in salt-bridge dynamics and phase
transitions

As discussed vividly in the introduction, self-organized criticality
(SOC) has often been characterized by scale-free distributions of ap-
propriate representative parameters across physical, chemical, biolo-
gical as well as other complex systems. In the current context of IDPs, it
appears from the above analyses that salt-bridge formation (and the
associated transient dynamics) can indeed be viewed as an

Fig. 7. The long range persistent salt-bridge in 1F0R demonstrating a case of conformational preference of a salt-bridge having a long range contact order.
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indispensable aspect of the criticality associated to the complex phase
transitions of these proteins among their structural conformations. In
order to further verify the plausibility of the hypothesis, the distribution
of ‘cluster persistence’ for the whole repertoire of salt-bridges (i.e.,
without using any persistence cut-off) were plotted in log-log plots.
Interestingly, all the plots (without hitting a single exception) could
best be fitted to straight-lines with descending (i.e., negative) slopes,
and, thereby demonstrating power law distributions (y=k.x-γ) with
lower order fractional exponents (Fig. 9, Fig. S1–S4 in the Supple-
mentary materials). This also is a strong indication of the scale in-
variant self-similar fractal geometries in the structural conformations of
these IDPs.

In the log-log plots (Fig. S1–S4 in Supplementary materials) of the
frequency versus ‘cluster persistence’ of salt-bridges are plotted in-
dividually for the structural conformations (clusters) corresponding to
1CD3, 1F0R, α-syn, Aβ42 respectively followed by linear least-square
fitting of the data. The least square fitted straight-lines are drawn in red.
The associated goodness of fit were measured by the corresponding
coefficients of determination (R2) which were found to be fairly high
(averages over all clusters were 0.904, 0.800, 0.922, 0.811 respectively
for 1CD3, 1F0R, α-syn, Aβ42) and statistically significant (p-values ≤
0.05) as suggested by their corresponding p-values (average over the

whole set: 0.0074± 0.014). Hence, the frequency distributions of
‘cluster persistence’ of the salt-bridges were indeed found to carry sig-
natures of power law distributions as is reflected from the values of the
corresponding fractional exponents (i.e., the slopes of the corre-
sponding best fitted straight-lines: -1.259, -1.023, -1.26, -0.599 aver-
aged over all clusters for 1CD3, 1F0R, α-syn, Aβ42 respectively).

The whole analysis gives us the essential insight that the transient
nature of salt-bridge dynamics not only plays a pivotal role in retaining
the overall desired confromational flexibility in IDPs (as was also re-
vealed earlier [44]) but also further helps them to attain their quasi-
stable conformational phases and traverse around these phases. The
continuous transition among these conformational phases makes the
IDPs behave like gels rather than crystalline solids to which the class of
well folded (and perhaps more importantly well packed) globular
proteins considerably resemble [61]. Therefore, in the current context
of molecular dynamics of IDPs, the whole mechanism of salt-bridge
formation can be envisaged equivalent to physical avalanche in sand-
pile model [32] or neural avalanches [37,40], wherein, scale-freeness
may potentially indicate emergence of self-organized criticality.

Table 1
Average persistence of representative salt-bridges for each conformational cluster (standard deviations given in parentheses) as a function of their cluster occupancy.

Idp Average cluster-persistence as a function of cluster occupancy

Cluster-number C1 C2 C3 C4 C5 C6

1CD3 0.282 0.350 0.635
(± 0.040) (± 0.063) (± 0.225) - - -

1F0R 0.391 0.583 0.419 0.429 0.582 0.719
(± 0.118) (± 0.124) (± 0.090) (± 0.117) (± 0.166) (± 0.173)

α-syn 0.403 0.329 0.430 0.704
(± 0.131) (± 0.022) - (± 0.004) (± 0.324) -

Aβ42 0.560 0.350 0.850
(± 0.119) - - -

Cluster occupancy refers to the number of clusters a salt-bridge is found to be present in, with a high persistence (pers ≥ 0.25). The entries without a corresponding
standard deviation refer to the ones with single occupancy (C1, C6 for Aβ42).

Fig. 8. The conformational phases (presented by cluster centers) and their corresponding representative salt-bridges for the four IDPs (1CD3, 1F0R, α-syn, Aβ42
presented in rows 1-4 respectively).
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4. Conclusion

The primary objective of this paper was to analyze the structural
disorder in IDPs and to find out the plausibility and extent of any
hidden order based on self-similarity which might be responsible for
their degenerate conformations. MD simulation and subsequent data
analyses of several IDPs reveal their different possible structural con-
formations among which the molecular structures get transformed in a
self-organized fashion to allow for structural degeneracy and become
intrinsically disordered. Different structural conformations of IDPs (as
obtained from MD simulation) are clustered in several groups based on
their structural difference or RMS deviations. The structural groups or
clusters are considered as dynamical phases and the transition dy-
namics among these phases are studied to analyze the persistence and
long term behavior of the corresponding IDPs while they are retained in
the form of a bunch of representative structural conformations. It has
also been revealed that the ‘transient dynamics’ of salt-bridges, which
was earlier found to be a key to retain their structural flexibility [44],
furthermore supports their structural degeneracy and self similarity of
the degenerate states. Overall, the salt-bridges could be broadly clas-
sified into two groups: persistent and ephemeral. While persistent salt-
bridges were found to be largely responsible in providing the desired
structural formations to the corresponding IDPs even as they con-
tinuously undergo transitions among conformational clusters (phases),
the ephemeral salt-bridges provided the essential conformational en-
tropy among (as well as, within) the clusters. The transient dynamics of
salt-bridges being a critical phenomenon in the complex nonlinear
dynamics of IDPs allows these proteins to retain their criticality and
complex phase transitions among different structural conformations.
Also, it is observed that the overall distribution of salt-bridge persis-
tence in different structural phases could be characterized by power-
law distributions with lower-order fractional exponents. This indicates
scale-invariant self-similar fractal geometries in the structural

conformations of IDPs. Thus, ‘salt-bridge dynamics’ here can be en-
visaged as an avalanche mechanism [37,40] in context to the complex
nonlinear dynamics of IDP's. The scale-free behavior of salt-bridge
formation and dynamics also indicates that IDPs are retained around
some critical points (or attractants) and allow themselves to transit
between consecutive structural phases through self-organized criticality
(SOC). The phase transition dynamics revealed that the structures (in
the course of equilibriation) resemble with one or two average struc-
tures (phases) for at least more than fifty percent of the ensembles. This,
in itself, is a strong insight in terms of understanding the overall
structural degeneracy of the IDPs. These conceptual foundations may
potentially facilitate structural tinkering, for example, in the design of
biotherapeutics against IDPs that are responsible for deadly neurode-
generative disorders. In more elaborate terms, each conformational
cluster (or each structural phase) from a time-evolved IDP structure
may individually be surveyed for its functional characterization and
possible utilities such as druggability (e.g., protein-protein binding) –
which would definitely aid benefits to the corresponding biomedical
exercises.
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