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Abstract
Graph coloring is a manifestation of graph partitioning, wherein a graph is partitioned based on the adjacency of its

elements. The fact that there is no general efficient solution to this problem that may work unequivocally for all graphs

opens up the realistic scope for combinatorial optimization algorithms to be invoked. The algorithmic complexity of graph

coloring is non-deterministic in polynomial time and hard. To the best of our knowledge, there is no algorithm as yet that

procures an exact solution of the chromatic number comprehensively for any and all graphs within the polynomial (P) time

domain. Here, we present a novel heuristic, namely the ‘trailing path’, which returns an approximate solution of the

chromatic number within P time, and with a better accuracy than most existing algorithms. The ‘trailing path’ algorithm is

effectively a subtle combination of the search patterns of two existing heuristics (DSATUR and largest first) and operates

along a trailing path of consecutively connected nodes (and thereby effectively maps to the problem of finding spanning

tree(s) of the graph) during the entire course of coloring, where essentially lies both the novelty and the apt of the current

approach. The study also suggests that the judicious implementation of randomness is one of the keys toward rendering an

improved accuracy in such combinatorial optimization algorithms. Apart from the algorithmic attributes, essential prop-

erties of graph partitioning in random and different structured networks have also been surveyed, followed by a com-

parative study. The study reveals the remarkable stability and absorptive property of chromatic number across a wide array

of graphs. Finally, a case study is presented to demonstrate the potential use of graph coloring in protein design—yet

another hard problem in structural and evolutionary biology.

Keywords Chromatic number � Graph partitioning � NP to P � Motif identifier � Protein design

1 Introduction

In graph theory, graph coloring (Jensen and Toft 2011) is a

special case of graph labeling (Dı́az et al. 2002). It is an

assignment of labels (Gallian 2015) traditionally known as

‘colors’ to edges and/or vertices of a graph subject to

certain constraints. In trivial formalism, it is a way of

coloring the vertices (nodes) of an undirected graph such

that no two adjacent vertices could be assigned the same

Communicated by V. Loia.

Abhirup Bandyopadhyay and Sankar Basu have contributed

equally to this work.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00500-019-04278-8) con-
tains supplementary material, which is available to autho-
rized users.

& Sankar Basu

nemo8130@gmail.com

1 Department of Mathematics, National Institute of

Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur,

West Bengal 713209, India

2 Department of IT, IIIT Alahabad, Jhalwa, Alahabad 211012,

India

3 Present Address: Department of EECS, IIT Bhilai,

Raypur 492015, India

4 Department of Physics and Astronomy, Clemson University,

Clemson, SC, USA

5 Present Address: 3BIO, ULB, 1050 Brussels, Belgium

6 Department of Microbiology, Asutosh College,

Kolkata 700026, India

123

Soft Computing (2020) 24:603–625
https://doi.org/10.1007/s00500-019-04278-8(0123456789().,-volV)(0123456789().,- volV)

Author's personal copy

http://orcid.org/0000-0003-1393-1982
https://doi.org/10.1007/s00500-019-04278-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04278-8&amp;domain=pdf
https://doi.org/10.1007/s00500-019-04278-8


color. This is called vertex coloring (MacDougall et al.

2002). Similarly, an edge coloring (Wallis et al. 2000)

assigns a color to each edge so that no two adjacent edges

share the same color, and a face coloring of a planar graph

(Sanders and Zhao 2001) assigns colors to each face or

region so that no two faces which share a common

boundary share the same color. Given all this, vertex col-

oring remains the first chapter of the subject, and other

coloring problems are transformable into a vertex version.

For example, an edge coloring of a graph is actually a

vertex coloring of the corresponding line graph, and a face

coloring of a planar graph is a vertex coloring of its dual

graph. However, non-vertex coloring problems are often

stated and studied independently. That is partly because of

perspective, and partly because some problems when nat-

urally extended could be best studied in the form of edges.

The convention of using colors was originated from

coloring the countries of a geographical map, where each

face is literally colored. This particular problem was for-

malized as coloring the faces of a planar graph. By

implementing ‘planar duality’, a characteristic feature of

planar graphs, the problem reduces to coloring of their

vertices. As a generalization the face coloring problem

could be viewed as vertex coloring problem of its dual

graph. For the sake of simplicity and computational effi-

ciency, first few positive or nonnegative integers are used

as the ‘colors’ (Zhang 2015) without the loss of generality,

so that one can use any finite set of colors as the ‘color set’.

Graph coloring could be viewed as the problem of

assigning colors to a graph subject to number of con-

straints. Different constraints could range from constraints

on a subgraph to those on the full graph or even on the

color itself. The face coloring problem even attained pop-

ularity among common people in the form of the popular

number puzzle Sudoku, the traveling salesman problem

and the Chinese postman problem. One of the major

applications of graph coloring is the register allocation in

compilers. The range of applications grows even further

ranging from coding theory to X-ray Crystallography

(Blum et al. 1987), from radar and astronomy (Zarrazola

et al. 2011) to circuit design and communication networks.

Day-to-day real-life problems like guarding an art gallery,

physical layout segmentation, round robin sports schedul-

ing, aircraft scheduling (Marx 2003), etc., should poten-

tially be benefited by an elegant algorithmic solution of the

problem. Graph coloring is still a very active area of

research with a bunch of unsolved problems, e.g., the

chromatic number of the plane is unknown where two

points are adjacent if they have unit distance. Other open

problems concerning the chromatic number of graphs

include the Hadwiger’s conjecture (Bollobás et al. 1980)

stating that every graph with chromatic number k has a k-

complete subgraph with k vertices; the Erd}os–Faber–

Lovász conjecture bounding the chromatic number of

unions of complete graphs that have exactly one vertex in

common to each pair, and the Albertson conjecture

(Albertson et al. 2010) that among k-chromatic graphs, the

complete graphs are the ones with the smallest crossing

number.

The first results about graph coloring deal almost

exclusively with planar graphs in the form of the coloring

of maps (Stiebitz and Škrekovski 2006). While working on

the map coloring problem of the counties of England,

Francis Guthrie postulated the four color conjecture, noting

that four colors were sufficient to color a map so that no

regions sharing a common border receives the same color.

In 1879, Alfred Kempe published a paper (Kempe 1879)

that claimed to establish the result which was controversial,

followed by much debate. In fact it took close to a century

until the four-color theorem was finally proved in 1976 by

Kenneth Appel and Wolfgang Haken (Appel and Haken

1977). The proof was the first major computer-aided proof

in this problem which went back to the ideas of Heawood

and Kempe while largely disregarding the intervening

developments. From that time onwards, active research is

ongoing on the algorithmic attributes of graph coloring.

The chromatic number problem falls in the list of Karp’s 21

NP-complete problems (Karp 1972) and remains compu-

tationally NP-hard (Garey et al. 1974). That is to say that it

is NP-complete to decide whether a given graph admits a k-

coloring for any given k except for the trivial cases

k [ {0,1,2}. In other words, the 3-coloring problem

remains NP-complete even on 4-regular planar graphs

(Dailey 1980), and the approximation algorithm (Hallórs-

son 1993), the most established one in the field, computes a

coloring of graph size n at most within a factor of O(n(log

n)-3(log (log (n)))2) of the chromatic number.

The relatively recent concept of chromatic polynomial

(Dong et al. 2005) has provided another alternative

approach toward solving the graph coloring problem,

serving important fundamental structures in algebraic

graph theory. However, nowadays, the most celebrated

conjecture is perhaps the ‘strong perfect graph conjecture’,

which was first brought about by Claude Berge, originally

motivated by an information-theoretic concept called the

‘zero error capacity’ (Lovasz 2006) of a graph introduced

by Claude E. Shannon.

The recent literature of combinatorial optimization

problems in general consists of a wide variety of related yet

distinct approaches ranging from adaptive and evolutionary

algorithms [including the implementation of multi-variant

strategies (Deng et al. 2015] like swarm intelligence

algorithms (Deng et al. 2012b, b), bee and ant colony

optimizations (Deng et al. 2015), strategies involving self-

adaptive differential evolution (Deng et al. 2013), parallel

hybrid intelligence optimization (Deng et al.
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2012a, 2017c, 2019), machine learning approaches like

optimal least square—support vector machines (Deng et al.

2017a) to empirical wavelet transform coupled with fuzzy

entropy methods (Zhao et al. 2017b, 2018; Deng et al.

2018) and extending even to the regime of order control

strategies (Zhao et al. 2017a) as in mechanical engineering.

Consequently, different combinatorial optimization-based

algorithms were used to address the graph coloring prob-

lem. However, in spite of the explosion of all these algo-

rithms, the graph coloring problem (in particular) still

remains hard and unsolved, due to the fact that an analyt-

ical solution of the chromatic number is yet not procurable

and also that the chromatic number of an arbitrarily large

graph is yet unknown. This has kept the field of graph

coloring quite open, and a detailed survey of the current

state of the art of existing graph coloring methods appears

to reveal that there is a definite room for improvement in at

least two of its major aspects: (1) minimizing the number

of colors or the chromatic number for any given arbitrary

large graph and (2) reducing the computational complexity.

The current study presents the ‘trailing path’, a com-

pound heuristic which finds (an approximate solution for)

the chromatic number for any given graph unequivocally

within the polynomial time domain (with respect to the

input graph size) and with a better accuracy than most

existing algorithms. The novelty of the current approach

lies in (1) the meticulous combination of the search pat-

terns of two existing heuristics (LF: based on the degree of

nodes and DSATUR: based on the color availability of

nodes to be colored) and in (2) following a trailing path of

consecutively connected nodes while coloring, simultane-

ously. The algorithm has been tested on a large plethora of

graphs of diverse size and connectivity and has resulted in

running time(s) which are at most polynomial with respect

to the input (i.e., the graph size), consistently throughout

without hitting a single exception, and this is true even

when running time is compromised at the cost of attaining

the best possible accuracy. The approximate solution of the

chromatic number of different structured networks, viz.

small-world, regular, random, scale-free and modular net-

works have individually been surveyed. The effect of

network parameters such as the average degree, rewiring

probability, link density on the distribution of chromatic

number has been vividly investigated. This should help to

understand the distribution of chromatic number in real-

world networks and facilitate their directed design. Pivotal

graph coloring attributes as revealed from the analyses

(viz., stability and absorptive properties) are critically

introspected. Special and interesting cases are exemplified

in the context of map coloring. Finally, to put into per-

spective the stability of graph partitioning as a critical and

discerning feature in compartmentalization, a case study is

presented, demonstrating its potential use in protein

design—which is an active field of research in experi-

mental and computational structural biology and molecular

evolution.

It is to be noted that in order to avoid repetitive use of

the long jargon ‘approximate solution for the chromatic

number’, we simply use ‘chromatic number’ wherever

applicable in the paper, which practically refers to its

closely approximate solution rendered by the algorithm.

This is particularly followed while discussing the general

graph-partitioning properties and while relating the

parameter to the more trivial graph parameters (e.g.,

degree, link density, etc.). In contexts where the ‘approx-

imation’ itself needs to be emphasized specifically and

elaborated (e.g., in describing the algorithm, discussing its

complexity, convergence and comparing it with other

heuristics, etc.), we do spell out the whole phrase.

2 Materials and methods

2.1 The ‘trailing path’ algorithm

Let G = (V, e) be a graph with N nodes. Let Ai represent an

array, referred as the ‘color array’ assigned for the ith node,

which stores all available colors that can be used to color it,

i.e., all those colors by which any neighbor of the ith node

is not yet labeled. The initial length of the color array, Ai, is

then set to N, as the minimum number of colors to label

N nodes must be lesser than or equal to N. Thus, initially Ai

is set to an ordered array of N colors for each (ith) node in

the network. The algorithm has two hierarchical levels in

its structure. In the first level, the algorithm starts coloring

nodes from the highest degree node. In cases of degenerate

paths where there exist more than one node with the

highest degree, it starts coloring from an arbitrarily chosen

highest degree node and assigns colors to nodes along

different random paths from this highest degree node. In

each iteration the algorithm trails through different random

paths and labels each ith node on the path sequentially by

the first available color in the corresponding color array Ai.

At each iteration, subsequent to coloring the ith node, all

edges incident to that (ith) node are deleted, along with the

node itself. Thus, at each step, the algorithm encounters a

new and unique induced subgraph of the original graph. In

case of disjoint subgraphs, the algorithm colors them sep-

arately, independent of each other. In the next (second)

level, the algorithm starts its trailing path from the node

which has the least number of colors available for labeling

it. Likewise to the earlier level, the algorithm arbitrarily

chooses a node in cases of degenerate paths, i.e., when

there exist more than one node with the same least number

of available colors. By this way, the algorithm keeps

assigning labels (i.e., colors) to a graph iteratively by the
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trailing path and keeps track of the minimum number of

colors required to label all nodes till convergence. Finally,

this updated minimum number of colors is returned as the

value of the chromatic number. The structure of the trailing

path algorithm could be written as follows.

To note is that the algorithm involves randomness from

its very first step. It starts coloring nodes from any highest

degree node taken at random (in case of more than one

highest degree nodes). It then chooses a path from that

highest degree node to a neighboring node which has the

minimum number of available colors (or the maximum

number of colors unavailable to it1) to label it. In case of a

tie between two or more neighboring nodes in this

parameter, it chooses a node which has a degree higher

than that of all other neighboring nodes. If there’s another

tie in terms of the degree also, it chooses a path randomly.

The salient feature of moving through only (consecutively)

connected nodes makes the algorithm follow a ‘trailing

path’. Again, the involvement of randomness in every non-

trivial step imparts an evolutionary attribute to the heuristic

where the corresponding number of colors determines the

fitness of a ‘trailing path’.

2.2 Comment on convergence

Let p be the probability of finding a trailing path which

gives the minimum coloring, i.e., the probability to choose

a spanning tree that gives the chromatic number. Then the

probability to find the desired trailing path in two iterations

will be 2p� p2. Similarly the probability to choose the

desired trailing path in n iterations may be written as n �
p� p2 � p3. . .� pn which equals to n � p� p2 � 1�p n�1ð Þ

1�p

which happens to be the probability of convergence. Hence

if n[ p
1�p

, it is expected to obtain the desired trailing path

at least once. However, the number of spanning trees of a

graph, in general, is of the order of nn�2. Therefore, it is

clear that ensuring convergence of chromatic number will

lead the algorithm to a complexity of the non-polynomial

time domain—which is obvious for any NP-hard problem.

2.3 Novelty and apt of the algorithm

Effectively, the ‘trailing path’ algorithm is a subtle com-

bination of the search patterns of two existing heuristics,

namely DSATUR and largest first (LF). LF is based on a

search along a descending order of degrees of nodes while

the search in DSATUR is based on the color availability of

nodes to be colored. This very meticulous manner of

combining the search patterns of DSATUR and LF imparts

in the current algorithm its novelty and effectiveness,

which is further enhanced by its unique feature of

traversing through a trailing path of consecutively con-

nected nodes while coloring. To the best of our knowledge,

there is no algorithm currently which follows such a

trailing path (or a continuous coloring scheme).

2.4 Algorithmic complexity

The algorithm in implementation repeats the inner loop

until the value of the chromatic number converges to a

single value (subsequent iterations are not able to find any

1. Repeat the whole process N times for different random trailing paths in the graph, 
until the chromatic number converges.

1.1. Do while: highest degree of the graph is positive.
Find the highest degree node q.
Start coloring by the first available color in the color array Aq.
Delete the color from the color array of all the nodes connected to node q.

1.1.1. Do while: q has at least one neighbor
Chose a neighbor p of q with the least number of colors in the color array.
Delete all the edges which are incident to q.
Assign a color to p by the first available color in the color array Ap.
Delete the color from the color array of all the nodes connected to node p.
If p has a neighbor r with degree 1, assign r the first available color from
the corresponding color array, Ar.
Delete all the edges which are incident to p.
Reset q=p.

1.2. Find the chromatic number as the minimum number of colors used to color the 
graph in each iteration.

2. Return the minimum value of the approximate solution for the chromatic number.

1 For any finite color array.
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smaller chromatic number). As explained in the previous

section, to obtain the exact value of chromatic number, this

loop will continue for exponential time in the worst case.

Consider a graph with n edges. Each iteration of the loop

first tries to find and extract the maximum degree node

which can be done in log n time using a heap data structure.

In the subsequent steps, the algorithm iterates over all the

neighbors of a node to find one with least number of colors.

This again is possible using log (n-1) time in the worst

case (assuming n-1 neighbors). The rest of the operations

in the loop (e.g., assigning color, deleting color and

deleting edges/vertices) can be done in at most log (n) time.

Thus, each iteration of the loop can be completed in at most

O(log (n)) time. Thus, if the algorithm continues for k it-

erations before converging to a value, the complexity of the

algorithm would be O(k log (n)).

3 The software: Chromnum

The software package with detailed documentation is

available at: https://github.com/nemo8130/Chromnum

containing two different versions, one (chromnum.m)

which was originally developed in MATLAB (version:

R2016a) using its advanced ‘graph’ module for visualizing

the colored graph. This version returns the colored graph in

both a circular and a forced layout. However, to make the

software more student-friendly, another version (chrom-

num_octave.m) is provided which runs on both MATLAB

and Octave replacing the more sophisticated graph-visu-

alization part by a simple display of a colored graph in a

random layout developed using the trivial ‘plot’ command

alone (Supplementary Figure S1) which is inbuilt in both

standard distributions (i.e., MATLAB and Octave).

Apart from returning (an approximate solution for) the

chromatic number and the visual display of the colored

graphs, the program also returns the corresponding col-

ormap (i.e., which node could be labeled by what color)

which is definitely more informative and useful in inves-

tigating real-world networks than just the chromatic num-

ber alone. However, it should be noted that this colormap

may in principle be potentially degenerate and the program

returns just one of the possible solutions obtained following

a particular ‘trailing path’. Repeating the program more

than once on the same adjacency matrix may result in

obtaining different colormaps on different runs. An illus-

trative example is shown in Fig. 1. Here, as illustrated in

the figure legend, the ‘trailing path algorithm’ leads to four

possible degenerate paths (in the second iterative step),

which eventually results in the same number of minimum

colors required to color the graph, though leading to the

attainment of two alternative colormaps. Here, as illus-

trated in the figure, the ‘trailing path algorithm’ leads to

four possible degenerate paths (in the second iterative

step), subsequent to coloring the highest degree node

(N6 ? red) in the first step. These four paths are:

N6 ? N14 (path 1), N6 ? N9 (path 2), N6 ? N17 (path

3) and N6 ? N18 (path 4). Note that all of the possible

four nodes have identical degrees of five and identical

lengths of their color array (19–1 = 18). In four indepen-

dent runs covering all four degenerate paths, the algorithm

returns the same chromatic number (Nc = 3) while

exploring two possible alternative colormaps (say, cm1:

path1, path4 and cm2: path2, path3).

To aid a variety of trade-offs between the run time and

the accuracy, the program has also been built with the

provision of accepting the desired number of iterations as

input by the user. Thus, the program can be run in single as

well as multiple iteration mode, as might be required for a

given context.

As discussed in the introduction, vertex coloring is the

heart of the graph coloring problem and an edge coloring of

a graph could be transformed into the vertex version of its

line graph. With this understanding, we also provide with

the distribution, a small script (linegraph.m) that can take

an original graph and return its corresponding line graph,

so that an edge coloring problem can also be addressed by

the same package.

4 Results and discussion

The Results and Discussion section may broadly be clas-

sified into four major parts: (1) a thorough discussion on

the different properties of chromatic number (particularly

emphasizing on its stability and absorptive property) with

systematic calculations carried out on different structured

networks (4.2. random graphs, 4.3. small world, 4.4. scale

free, 4.5. modular, 4.8. regular graphs) coupled with a

comparative study (4.7); (2) a whole section on computa-

tional complexity (4.9); (3) comparison with other heuris-

tics (4.10) and (4) with a few case studies demonstrating

the application of graph coloring (4.11–4.13). In order to

initiate a systematic discussion of the stability and

absorptive property of chromatic number, we required a

method (preferably a numeric scheme) to account for the

topological variation in each category of structured net-

works—which has been introduced and elaborated in

Sect. 4.1.

4.1 Accounting for topological variability
in relation to graph partitioning

Graph coloribility is essentially a demonstration of graph

partitioning, wherein the nodes (or edges) are partitioned

on the basis of their relative adjacencies. On the other hand,
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it is the different combinations of adjacencies that lead to

the variations in network topologies. However, a combi-

nation of specific network parameters (e.g., network size,

average degree, rewiring probability, etc.) can, in principle,

be so sampled (systematically) that graphs with roughly

equal (or at least similar) link densities (Ld) can be con-

structed with small-to-large variations in their network

topologies. Therefore, it would be really interesting to

explore if there exists any empirical correlation between

‘partitioning’ (in terms of the chromatic number) and

‘topological variation’ in graphs. As a complementary

analysis, it is also important to find out the relation between

‘partitioning’ and global network descriptors like Ld.

Detection of topological variation between graphs

essentially approaches to the famous ‘graph isomorphism’

problem (RJLipton?KWRegan 2015) which is a subject on

its own and falls outside the scope of the current work. To

simplify matters, we used a modified version of a previ-

ously proposed numeric scheme to identify unique graphs

from a statistical ensemble of different structured (and

unstructured) networks.

In order to explore the ‘network view’ of the internal

architecture of globular proteins (Basu et al. 2011), a novel

numeric scheme (namely, the ‘motif identifier’) was pro-

posed in a previous study which found its efficacy in

characterizing and classifying contact networks within

proteins as a gradual and context dependent assembly from

a finite yet non-rigid basis set of unique graphs, namely

‘packing motifs’. In effect, it demonstrated a nucleation-

condensation model in protein packing. Protein contact

networks, however, were restricted in the extent of possible

topological variation (like any other real-world networks)

due to molecular steric constraints. Here, in this current

study, we explored the potentiality of this ‘numeric

scheme’ to identify unique graphs generally in systemati-

cally sampled statistical ensembles of random and struc-

tured networks. We also take the opportunity to discuss the

limitation of the numeric scheme for the particular case of

topological variations in a subset of k-regular graphs

(k[ 2) of identical network size.

To that end, we adapted a modified version of the pre-

viously proposed ‘numeric scheme’ to represent unique

graphs that can directly be calculated from their adjacency

matrices. In line with the earlier formulation (Basu et al.

2011), each node of a graph was initially assigned a string

of numbers of length (d ? 1) (where d is the degree of the

node) starting with its own degree, followed by the degrees

of its connected nodes (direct neighbors) sorted in a

descending order, and separated by two distinct delimiters

(say * , –). These delimited and concatenated numeric

strings (viz. nodal motifs) were then collected as elements

of an array and converted into a hash table, tabulating the

unique number strings and their respective counts. Gener-

ally, for any two given graphs (except for regular graphs),

if their corresponding hash tables were found to be iden-

tical, that is to say that if both graphs (hash tables) con-

tained identical set of nodal motifs (number strings) with

identical counts, they could be treated as identical graphs.

Thus, the motif identifier essentially discriminates between

two graphs based on the combined distribution of degrees

Fig. 1 The trailing path algorithm. The figures illustrate a demonstrative example of how the trailing path algorithm operates (see Main Text)
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of their constituent nodes, coupled with the degrees of their

neighboring nodes, and will potentially signal for any

variability in these network parameters between two given

graphs (Fig. 2a). In fact, this is precisely the reason why

the identifier fails to discriminate between two non-iden-

tical (non-trivial) k-regular graphs (k[ 2) (Fig. 2b). In

other words, since for regular graphs, all nodes have

identical degrees, no variability can be accounted for in

terms of their degree and/or the degrees of their neigh-

boring nodes, even if the two k-regular graphs (of the same

size) are topologically non-identical. The motif identifier

will hence return identical hash tables for both the graphs.

In Fig. 2, panel A shows a case where the motif identifier

successfully discriminates between two non-identical

graphs while panel (b) shows the limiting case of two non-

identical 3-regular graphs—where the motif identifier fails

to discriminate between the two.

It is important to note that although the motif identifier

may incorrectly signal identity for the case of two or more

non-identical graphs (in case of k-regular graphs; k[ 2), it

will never signal non-identity for any two identical graphs.

Hence, if it ascertains n unique graphs to be found from a

statistical ensemble of N graphs (N[ n), then there is

definitely at least n unique graphs (if not more) in the set of

N.

4.2 Chromatic number as a function of link
density: theoretical and statistical bounds
in random graphs

As discussed in the Theory section, there are theoretical

upper-bounds of chromatic number for typical ‘structured’

graphs. A complete graph of N nodes will trivially be N-

colorable and an entirely disconnected (edge-less) graph

will be 1-colorable by definition. Again, all trees2 con-

taining more than one node will always be 2-colorable

irrespective of its length and extent of branching. Since,

trees are acyclic connected graphs, by definition, they lack

any embedded closed triplet clique which has been

revealed as the unit of clustering per se (Basu et al. 2011).

They therefore essentially have zero-clustering (i.e., clus-

tering coefficient3 = 0) and will require just two colors

alternatively put to the nodes along a trailing path to color

them minimally and exhaustively. To that end, it is obvious

that any graph containing an embedded triplet clique (i.e.,

clustering coefficient[ 0) will at least be 3-colorable.

Similarly, any even cycle (or closed cyclic graphs consti-

tuted of even number of nodes) will be at least 2-colorable,

and any odd cycle will be at least 3-colorable, irrespective

of the actual graph size.

However, most real-world networks are non-trivial and

offer far greater complexity and variability in their

topologies. Hence, exhaustive and systematic analyses

were felt necessary to perform, varying the link density of a

graph within its entire theoretical range, [0,1] and then

computing the chromatic number for all graphs and carry

out a thorough statistical analysis.

First the graph size (i.e., the number of nodes, N) was

fixed at a certain value (say N = 10), and the link density

Fig. 2 The motif identifier: accounting for topological variations in

graphs. The motif identifier (presented in the form of a hash table) is a

collection of numeric strings representative of each unique nodal

motif and their corresponding counts. The first number in each

numeric string stands for the degree of a node, and the other numbers

represent the degrees of its direct neighbors sorted in a descending

order. The degrees of the neighbors are concatenated by a hyphen (-)

and their concatenated number strings are further joined to the degree

of their corresponding source nodes by a tilde (*)

2 Trees are undirected graphs where any two nodes are connected by

exactly one path.
3 Clustering coefficient of a node in a graph is the ratio the total

number of actually existing connections in its direct neighborhood

and the number of maximum possible connections within the same

set. For a graph or subgraph, the average clustering over all nodes is

considered.
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(Ld) was varied within its entire range, [0,1], giving rise to

the construction of random graphs4 with connection prob-

abilities same as their Ld values. Thus, for a given Ld

value, an ensemble of random graphs was sampled cover-

ing a wide variety of possible range of topologies. Chro-

matic numbers were calculated for each of these graphs,

and the minimum and maximum along with the average

(and standard deviations) plotted as a function of link

density (Fig. 3). All three parameters converged to 1 (the

theoretical lower bound) for Ld = 0 and to N for Ld = 1

(upper bound). As expected, the chromatic number fol-

lowed an ascending trend as a function of link density. As

could be seen from the error bars associated with the

average plots, chromatic number generally varies within a

narrow range (* ± 0.25 to 1.00) for lower values of Ld

and gradually increases at its higher end. The variation in

chromatic number at the higher ends of Ld is certainly non-

negligible. Increasing the size of the graph (N = 10, 15, 20:

illustrated, respectively, in panels (A) (B) and (C) of

Fig. 3) did not seem to alter the overall trend. In other

words, the trajectory of chromatic number as a function of

link density appears to be characteristic, irrespective of the

graph size.

4.3 Chromatic number of small-world networks

Small-world networks are characterized by the combined

features of local cohesiveness and global reach. That is to

say that a small-world network is essentially locally

cohesive, attaining a reasonably high clustering coefficient

scaling to that of a regular network5 of the same size. At

the same time, it is also globally reachable represented by a

trademark of low characteristic (or mean shortest) path

length6 equivalent to that of a random network of the same

size. From definition of clustering, it is obvious that small-

world networks essentially sustain one or more closed tri-

plets (i.e., 3 cliques) (Basu et al. 2011).

There are different algorithms to generate small-world

networks out of which the most famous is surely the ‘Watt–

Strogatz’ algorithm (Watts and Strogatz 1998)—which was

adapted in the current study. In this approach, a regular

graph is first generated taking its size and the degree of

each node as inputs. Then, the edges of the given random

network are rewired with a given rewiring probability, i.e.,

an edge of the graph is deleted at the cost of one long range

link to be created with this same rewiring probability. This

operation on the template regular network will lead to the

generation of a small-world network of the given size and

an average degree identical to that of the template regular

graph. Even a low rewiring probability will lead to the

generation of a network showing small-world properties.

Trivially, the resultant graph would remain unaltered (i.e.,

the initial regular network) if the rewiring probability is

exactly ‘zero’ and would map to a purely random graph

when the rewiring probability is exactly 1. So, as a result of

varying the rewiring probability from 0 to 1, the adapted

algorithm would generate small-world networks trending

from regular to purely random.

To map the distribution of chromatic number for a wide

variety of small-world networks, different graph sizes were

considered ranging from 5 to 30 at an interval of 5 nodes.

For each of these graph sizes (N), degree of each node

(k) was made to vary from 1 to (N-1), while the rewiring

probability (prw) was sampled in the range of 0.1–1 at an

interval of 0.1, and the chromatic number of each graph

was calculated. Thus, this calculation covers a wide spec-

trum of networks ranging from graphs close to being reg-

ular (say, at prw * 0.1) to graphs that are purely random

(at prw = 1.0).

Based on these network parameters (N, k), link density

(Ldsmw) can be analytically derived by the following

expression (Eq. 1).

Ldsmw ¼
N�k
2

NC2

ð1Þ

where NC2 is the maximum possible number of links that

the graph of N nodes can accommodate. Noteworthy is that

the link density is trivially independent of the rewiring

probability (prw) for small-world networks. The reason is

that, for a given rewiring probability, an edge is generated

at the cost of an existing edge at that probability, and

hence, the total number of connections should ideally

remain the same in both the template (regular) and the

resultant (small-world) networks.

To estimate the stability of the calculated chromatic

number (crn) across a wide ‘topological’ variety of graphs,

constructed from an identical set of network parameters (N,

k, prw), all calculations were repeated 100 times for each

set of sampled network parameters, and the average (lsmw)

and standard deviations (rsmw) in their chromatic numbers

were recorded. Hence, we were actually looking at a sta-

tistical ensemble of ‘potentially different’ networks having

identical network parameters rather than a randomly

selected single graph. The topological variation in each

statistical ensemble was enumerated by the numeric

scheme (motif identifier) elaborated earlier. Other than the

really small networks (N = 5), most of the resulting graphs

were found to be unique (Supplementary Table S1). Except

4 A graph where all the connections (edges) are randomly assigned.
5 A graph where all nodes have identical degrees.
6 Shortest path of a pair of nodes in a graph is the minimum number

of links connecting the two. The average over all pairs of nodes in a

graph (or subgraph) defines the characteristic (or mean shortest) path-

length of the graph (or subgraph).
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for the trivial cases of complete graphs (resulting from

k = N-1), the number of topological variants (unique

graphs) was found to be increasing proportionally with the

rewiring probability (prw) while eventually saturating at the

highest possible value, 100, for a large majority of sampled

network parameters (N[ 5, prw C 0.4 say). Note that a prw

of precisely 1 would lead to the generation of purely ran-

dom graphs—which by definition are expected to be

unique. On the other hand, a very low rewiring probability

would result in graphs close to the template regular graphs,

with a restricted scope of topological variability, particu-

larly relevant for small networks. Hence, it was no surprise

to find only 5 unique graphs for N = 5, k = 2 (Table S1).

Considering this, the parameters were so chosen that could

judiciously eliminate the trivial and limiting cases of reg-

ular graphs (by setting prw[ 0). Hence, the topological

variations obtained by the motif identifier should be treated

unambiguous, reflecting the fact that most networks in a

sampled statistical ensemble (as a function of identical

network parameters) were indeed unique.

Given such large topological variability in the sampled

graphs, the average chromatic numbers, however, were

found remarkably stable, reflected in significantly low

standard deviations relative to their corresponding means

(Supplementary Figure S2) attained for virtually all sta-

tistical ensembles (|r|smw * 7.6 ± 4.9% of |l|smw).

Therefore, small-world networks generated with identical

network parameters can be represented by a characteristic

chromatic number.

In parallel, link densities (Ld) were also computed, both

analytically (Ldexp) as described above, as well as from the

actual networks (Ldobs), as a complementary measure of

the topological variability. Mean (|Ldobs|) and standard

deviations (rLd_obs) of the observed link densities (Ldobs)

were recorded for each statistical ensemble (i.e., generated

from an identical set of network parameters) and compared

with the corresponding expected value (Ldexp). |Ldobs| and

Ldexp were found to be practically identical with negligibly

small standard deviations (Supplementary Figure S3) for

small-world networks of all sizes.

For each network size (N), the average chromatic

numbers obtained from the aforementioned statistical

ensembles were then plotted as surfaces, as a bivariate

function of the average degree (k) and the rewiring prob-

ability (prw). As could be seen from the surface plots

(Fig. 4), the surfaces were reasonably smooth, resembling

a ‘floating carpet’ from the Arabian Nights, elevated in the

breeze toward the diagonal corner with high k and p. Sim-

ilar patterns were obtained for all tested network sizes

(N = 5, 10, 15, 20, 25, 30), although, for the smallest

network size (N = 5), the surface was relatively more

corrugated due to relatively smaller number of sampled

data points. It is also noteworthy that for N = 5, k = 2, the

standard deviations were consistently on the higher side

(average chromatic numbers: 2.75 ± 0.45) in the whole

range of p going from 0.3 to 1. The reason is that the

template regular graph obtained for N = 5, k = 2 is the

‘pentagon’ (or 5-cycle) which is trivially (at least) 3-col-

orable (see Theory and Algorithm) and thus, any rewiring

generally leads to a random hopping of the average chro-

matic number between 2 and 3. The nature of the surface

plots physically means that a small-world network gener-

ally attains a higher chromatic number for higher average

degree of the network, which, in turn, is proportional to the

link density of the network. A higher rewiring probability

also leads to a higher chromatic number, but the growth of

chromatic number is generally more as a function of the

average degree than the rewiring probability.

4.4 Chromatic number of scale-free networks

A scale-free network is formally defined as one for which

the degree distribution follows a power law (Clauset et al.

2009), at least asymptotically. That is to say that the

fraction of nodes P(k) in the network having k connections

goes for large values of k as P(k)* k-c; where c is a

parameter falling typically in the open interval of (2, 3),

while occasionally lying outside these bounds. In the cur-

rent work, the Barabasi–Albert algorithm (Albert and

Barabási 2002) was adapted to generate a range of scale-

Fig. 3 Chromatic number as a function of link densities for random

graphs. The red, green and blue curves represent maximum, minimum

and the average chromatic numbers while the standard deviations are

given by means of error bars centering the corresponding average

values (color figure online)
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free networks. This algorithm follows the principle of

‘preferential attachment (Choromański et al. 2013) of new

nodes to previously existing high degree nodes’ and is

based on two parameters, namely the network size (N) and

the average degree of nodes (k). Starting from two con-

nected nodes, each time a new node is attached in the

network with the probability of creating an edge between

this new node and an existing node being proportional to

the degree of the existing node. In other words, new edges

incident to the new node are preferentially attached to

existing nodes based on a cumulative degree distribution of

existing nodes computed at each step of the growing net-

work in (N-2) steps for a network of size N. Hence, here,

chromatic number may be treated and tested as a bivariate

function of two scale-free parameters (N, k).

Similar to the case of small-world networks, link density

(Ldsmw) of scale-free networks can also be analytically derived

based on these network parameters (N, k), giving an identical

expression to that of the small-world networks (Eq. 2).

Ldscf ¼
N�k
2

NC2

ð2Þ

where NC2 is the maximum possible number of links if the

N-graph was complete.

Following the above algorithm, the network size (N) was

sampled from 5 to 50 at an interval of 5 nodes; the average

degree (k) was made to vary from 1 to (N-1) and the

chromatic number calculated for each graph. Similar to the

small-world networks, a statistical ensemble of 100

potentially different graphs was considered for each given

set of network parameters (N, k), and the average (lscf) and

standard deviations (rscf) in their chromatic numbers were

recorded.

Topological variability (as enumerated in terms of the

motif identifier) was found to be even greater than the

small-world networks. Only for the exception of N = 5 (the

smallest network size considered) which trivially presents a

restricted combinatorial space of topological variability,

the number of unique graphs was otherwise invariably

found to reach the maximum possible value of 100 (Sup-

plementary Table S2). Hence, by and large, we were

indeed looking at non-identical networks throughout, in the

overwhelming majority of statistical ensembles, sampled at

fixed sets of network parameters (N, k).

Similar to that of the small-world networks, here also

the average chromatic numbers were found to be remark-

ably stable reflected in their low standard deviations

(Supplementary Figure S4) with respect to their corre-

sponding means (|r|scf * 8.9 ± 5.6% of |l|scf), and hence,

the statistical ensembles can be represented by the corre-

sponding ‘characteristic’ average chromatic numbers.

Fig. 4 Chromatic number of small-world networks. Average chro-

matic numbers (|Chrn|) are plotted (as surfaces) as bivariate functions

of the small-world network parameters (average degree: k, rewiring

probability: Prw) pertaining to the statistical ensembles for each

sampled network size
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Likewise to the small-world networks, link densities

(Ld) were also computed, both analytically (Ldexp) and

from the actual networks (Ldobs) and their mean (|Ldobs|)

and standard deviations (rLd_obs) recorded for each statis-

tical ensemble. Average observed and expected link den-

sities (|Ldobs| and Ldexp) were found to be largely matching

(Supplementary Figure S5) with minor variations in the

two measures being observed mostly for high link densi-

ties; say at k * (N-1). Standard deviations in the

observed link densities were found to be low all throughout

the whole range of sampled network sizes (N going from 5

to 50).

The distribution of average chromatic number as a

function of the scale-free parameters (N, k) was then

plotted as a surface plot (Fig. 5) which looks like a par-

tially unfolded Chinese hand fan, with chromatic number

increasing along both N and k in a discrete step-wise

hierarchical manner. The variation in the average chro-

matic number is realized more in a wavy manner along the

average degree than along the network size.

In a closer look, when the average chromatic numbers

were plotted individually as a function of the average

degree (k) for each network (Supplementary Figure S6), its

ascending trend was further confirmed with increasing

k which eventually saturates at the higher end of k. To

exemplify this saturation event, an ensemble of scale-free

networks of size 50 is presented (Supplementary Fig-

ure S7), generated by varying the k in the range of 41–49.

Noteworthy is the fact that all these graphs are 17- to

19-colorable, while the variation in the corresponding total

number of edges in these graphs is in the range of 885–967

(average: 924.4 ± 24.1). Thus, a tiny bin (D) of 3 in the

value of chromatic number could actually accommodate

for 82 new edges in this particular example—indicative of

the remarkable absorptive property of graph coloring for

closely related yet distinct graph topologies.

When the trends among different network sizes were

compared, mild and gradual increases in the highest value

of the average chromatic number were observed for larger

networks (Fig. 5). Further, all of these ‘average degree

versus average chromatic number’ plots for different net-

work sizes (from 5 to 50) could be best fitted to straight

lines having almost identical slopes (Fig. 6) characterized

by a negligibly small standard deviation among them

(0.083). This implies that the distribution of chromatic

number for these graphs is independent of the network size

(N)—which is the hallmark feature of scale freeness. Also,

from the average slope (* 0.39) of these best fitted straight

lines, one can, in principle, approximately calculate the

chromatic number of a scale-free network from the average

degree (k) alone (given the negligibly small standard

deviation obtained in their slopes).

4.5 Chromatic number of modular networks

Modularity is one key measure to demonstrate the topo-

logical structure of graphs. It could be viewed as a measure

of strength of division of a network into modules (i.e.,

groups, clusters or communities). In other words, modular

networks are those in which the connection density is

significantly higher within modules compared to that of the

nodes between different modules (Newman 2006). Modu-

larity is frequently used to detect the community structure

in real-world networks as part of optimization methods.

However, small communities are often left undetected by

‘modularity’ due to its inherent limit in resolution. Bio-

logical networks of diverse origins including animal brains,

contact networks in multi-domain proteins, molecular

interaction networks in complex signal transduction and

cross-talking metabolic pathways exhibit high degree of

modularity.

Modular networks were so constructed that the chro-

matic number could be viewed as a multivariate function of

five network parameters, namely the network size (N), the

number of modules (m), deviation in the number of nodes

in the modules (e), and two probability measures defined as

the (i) probability of having an edge within each module

(the intra-modular connection probability: p1) and (2) that

of having an edge between different modules (the inter-

modular connection probability: p2). To simplify matters,

only bi-modular graphs were considered (i.e., m = 2)

where the modules were made to vary in their size by a

single node (e = 1). Therefore, we were essentially looking

at large communities of roughly equal size of each module

(Supplementary Figure S8). Graphs were constructed from

10 nodes to 40 with an increment of 10 nodes, p1 varying

from 0.2 to 1.0 and p2 from 0.1 to p1, both at an interval of

0.1. By this setup, it was ensured that in the resulting

networks, the probability of an intra-modular edge

Fig. 5 Chromatic number of scale-free networks. Average chromatic

numbers (|Chrn|) are plotted by means of a surface as bivariate

functions of the scale-free network parameters (network size: N,

average degree: k) pertaining to the sampled statistical ensemble
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formation is always higher than that of an inter-modular

edge (p1[ p2) implementing modularity, with the sole

exception of the extreme case of purely random networks

resulting at their equality (p1 = p2) (other than the trivial

case of the complete networks resulting from p1 = p2 = 1).

In other words, there is no point in covering the whole

range of probability values for both p1 and p2 since p2[ p1

will represent anti-modularity (rather than modularity),

which is ambiguous in the given context. On the contrary,

it is rather interesting to note that an alternative approach to

generate modular networks as prescribed above would in

fact result in k-partite graphs made of k modules by

inverting the trends of the two probability parameters (i.e.,

p1 = 0, p2[ p1). These graphs, by definition will be

k-colorable and a prominent example should be the case of

three regular bi-partite graphs (Supplementary Figure S9).

It is to be noted that the choice of m = 2 and e = 1 in

effect will result in the formation of bi-modular networks

of size n and n-2 where n ? (n-2) = N.

Likewise the structured networks described before, link

density for modular networks (Ldmod) can also be derived

analytically based on these network parameters (N, p1, p2)

by the following expression (Eq. 3).

Ldmod ¼
p1 � nC2 þ n�2ð Þ C2

� �
þ p2 � n � n� 2ð Þ

2n�2ð ÞC2

ð3Þ

where N = 2n-2 and hence the denominator stands for the

maximum possible links in the N-graph.

Consistent with the earlier calculations, again a statis-

tical ensemble of 100 graphs was sampled for each set of

fixed network parameters (N, m, e, p1, p2), the topological

variability in the ensemble was accounted for by the motif

identifier, and the average (lmod) and standard deviations

(rmod) in the chromatic numbers were recorded.

Except for the trivial case of the complete graphs

resulting from p1 = p2 = 1, most other combinations of

network parameters exclusively gave rise to unique graphs

(i.e., 100 out of 100 cases) (Supplementary Table S3). In

contrast, chromatic numbers of the graphs constituting each

of the statistical ensembles were again found to be

remarkably stable, reflected in their low standard devia-

tions (Supplementary Figure S10) compared to their cor-

responding means (|r|mod * 15.0 ± 10.9% of |l|mod). The

standard deviations, however, were somewhat higher than

those obtained for small-world and scale-free networks,

although the average chromatic numbers could still be

considered characteristic of the statistical ensembles. It was

noteworthy that the standard deviations reduced gradually

with increasing network size, attaining significantly low

values for larger networks. This is expected since the

modular networks are inherently partitioned into modules

which itself is an influential, causal factor for the stability

of chromatic number. Furthermore, the average chromatic

numbers for larger modular networks should be able to

buffer the local perturbations caused by the fluctuations in

the probability parameters (p1, p2) in a better way com-

pared to smaller networks.

Likewise to the small-world and scale-free networks,

link densities (Ld) were also computed, both analytically

(Ldexp) and from the actual networks (Ldobs) and their

mean (|Ldobs|), standard deviations (rLd_obs) recorded for

each statistical ensemble. Average observed and expected

link densities (|Ldobs| and Ldexp) were found to be almost

identical (Supplementary Figure S11), with the extent of

their agreement increasing with increasing network size

(N), while the standard deviations in the observed link

densities (rLd_obs) followed an inverse trend.

Similar to the earlier analyses, the distribution of aver-

age chromatic numbers was plotted as a function of (p1, p2)

Fig. 6 Average chromatic

number versus average degree

plots exhibiting scale freeness.

For each network size, the

points could be best fitted to

straight lines having almost

identical slopes (* 0.39). The

standard deviation in the slopes

was negligibly small (0.083)—

implying that the distributions

are independent of the network

size (N) and hence scale free
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as a surface (Fig. 7) for each distinct network size (N = 10,

20, 30, 40). The ‘average chromatic number’ surfaces were

nearly similar in shape for all network sizes, growing

steeply along increasing p1 (i.e., along higher intra-modular

connection densities) right up to its maximum possible

value equaling the network size (N) upon reaching a

complete graph for p1 = 1, p2 = 1.

Although the growth of average chromatic number

along p1 is fairly steep throughout its entire range, there is a

clear point of saturation for the parameter before reaching

completeness (i.e., p1\ 1.0). As could be seen from the

surface plots (Fig. 7), this point of saturation for chromatic

number is attained at * 8 for N = 10; * 14 for

N = 20; * 22 for N = 30; * 24 for N = 40; after which,

there is an abrupt jump directly reaching the theoretical

maxima, equaling the corresponding network size (N) for

complete graphs. This physically means that the corre-

sponding number of colors can actually take care of a

whole range of connections (and graphs) until the critical

threshold of completeness is attained at p1 = 1, p2 = 1.

It should be noted that the chromatic number of modular

networks are largely dominated by the chromatic number of

its largest module. With this understanding, bi-modular net-

works were judiciously designed where the size of the mod-

ules were varied by 2 nodes (by setting m = 2, e = 1). Now,

since p1 (the probability of having an intra-modular edge) was

kept identical throughout both modules of the graph, the

larger module will have a few more connections with

approximately having the same connection density to that of

the smaller module. This implies that the chromatic number

of these bi-modular networks is unambiguously dominated by

the chromatic number of the larger module. That is to say that

the larger module is generally expected to cover the set of

colors required to color the smaller module as well.

4.6 Stability of vertex coloring

It is highly unlikely that an identical network will reappear

in an unbiased statistical ensemble for all the structured

networks described till this point, since all of them have

one or more random components in their construction. A

careful re-investigation of the actual topological identity of

the resultant networks (by implementing the ‘motif iden-

tifier’) could actually validate this hypothesis. Given such

large topological variation, the statistics of the chromatic

number shows remarkable stability of graph partitioning.

This indicates that in certain structural problems, chromatic

number has the potential to remain invariant against a flow

of considerable topological variation in graphs.

The stability of chromatic number is in fact similar in

character to chemical buffers (McIlvaine 1921), wherein

change in pH due to the addition of acid or alkali is resisted

by an adequate storage of an alkali or proton reserve,

respectively. Here, rewiring of links maps parallel to the

addition of acid or alkali, whereas the presence of a buffer

acts as a restoring force similar to the absorptive property

inherent in graph partitioning.

4.7 A comparative outlook of vertex coloring
across different structured networks

Apparently, one technical difficulty to compare the trends

of chromatic number across different network types is that

they were systematically constructed by distinctly different

network parameters. However, the network size (N) and the

link density (Ld) as an ordered pair can potentially be

viewed as a reduced representation of a graph that can

bridge the gap across different network types and provide a

common conceptual platform to discuss their relative

Fig. 7 Chromatic number of

modular networks. Average

chromatic numbers (|Chrn|) are

plotted (as surfaces) as bivariate

functions of the modular

network parameters, the intra-

modular connection probability:

pintra-module (p1 in the Main

Text) and the inter-modular

connection probability: pinter-

module (p2 in the Main Text)
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trends. From that platform, here we attempt to point out

some key observations by means of a comparative study.

The network size (N) of 20 was chosen as a test case

which is common to all three statistical samplings (i.e.,

scale free, small world and modular). The average chro-

matic numbers (crn) were then plotted as a function of link

density (Ld) for each network type (Supplementary Fig-

ure S12). All three ‘crn versus Ld’ plots could be best fitted

to quadratic polynomials with R2 values of 1.00, 0.92 and

0.99, respectively, for scale-free, small-world and modular

networks.

Scale-free networks attained the lowest maximum value

for the average chromatic number (* 9.8), while the other

two types (small-world and modular) could climb to their

theoretical maxima of 20 upon completeness. It should be

noted here that scale-free networks would never attain

completeness since the degree distribution in complete

graphs does not follow a power law. This is true even when

average degree, k, is sampled to be N-1, the maximum

possible value the parameter can attain. Dynamic real-

world networks growing in size with time generally cor-

responds to scale-free networks. This, in effect, should be

the best possible manifestation of the absorptive property

of chromatic number, wherein newly added nodes will get

absorbed within the partition of already existing color

classes. The other network types can, however, attain

completeness, by definition. In more precise terms, a

complete network is in fact the one with the best display of

small-world properties, since it is locally the most cohesive

(clustering coefficient = 1) and globally the most reachable

(characteristic path length = 1). On the other end, the

extreme case of modularity can be extrapolated to com-

pleteness where both intra- and inter-modular connection

probabilities converge to their maximum value of 1.

For the corresponding small-world networks, a thin bin

of link densities (or practically the same value) could

actually give rise to a much thicker array of average

chromatic numbers—thereby attaining the least of the R2

values in its quadratic fit compared to the other network

types. This physically means that the topological variation

is quite wide given the same density estimates mostly

influenced by different rewiring probabilities giving rise to

different chromatic numbers. However, it should not be

mistaken with the fact that chromatic number is generally

remarkably stable against topological variations for the

same global network parameters (N, Ld).

The average chromatic numbers of the corresponding

modular networks are less stable than the other network

types which are reflected in their scatter (Supplementary

Figure S12). This is perhaps anticipated because of at least

two plausible causal factors: (1) in modular networks, each

module could potentially have a diverse plethora of topo-

logical variability; however, the chromatic number is

dominated by the colorability of the largest (or the more

connected) module, as discussed earlier; (2) modular net-

works approach completeness as a function of two

parameters simultaneously, both approaching their maxi-

mum values (Lim, p1 ? 1, p2 ? 1), whereas small-world

networks proceed toward completeness as a function of just

one parameter (viz. average degree, k) approaching its

maxima (Lim, k ? (N-1)), while scale-free networks rule

out completeness. This also potentially adds extra variation

in the coloribility of modular networks compared to either

small world or scale free.

4.8 Chromatic number of regular networks

As the name suggests regular networks are the most

ordered among the different types of structured networks.

They are formally defined as networks where all the nodes

have identical degrees; i.e., a k-regular graph of N nodes

has k edges incident to each of the N nodes. Regular net-

works are prevalent in different three-dimensional physico-

chemical extended structures, e.g., crystal lattice, consec-

utively concatenated carbon chains in graphenes, poly-

benzene hydrocarbons, hydrogen bonded networks in water

structures, etc. All these structural ensembles are extended

in all three dimensions and potentially infinite in their

growth. From a network point of view, however, all the

above examples have essentially low regular degrees

assigned to each node, e.g., 3 for carbon in graphenes, 4 for

the oxygen in water and so on.

An independent small calculation was carried out to

investigate the chromatic numbers of regular networks.

Unlike the previous analyses (for small-world, scale-free,

and modular networks) here, no statistical ensembles were

considered for two reasons: (1) since regular networks are

generally restricted (compared to other structured or ran-

dom networks) in their topological space for a given set of

fixed network parameters and (2) since the motif identifier

is incompetent to discriminate between non-isomorphic k-

regular networks of N nodes (as elaborated in Sect. 4.1).

Thus, the regular networks were built based on two net-

work parameters namely the network size N and the degree

of each node (k). The sampling range for this network

parameters was set in accordance with the calculation for

small-world networks, varying N from 4 to 30 at an interval

of 2, while varying k from 2 to (N-1). Setting k = 1 would

lead to a collection of single, mutually disjoint edges which

is ambiguous in the given context. On the other end of the

spectra, k = (N-1) would lead to complete graphs which

are also regular. Also, as a rule, N and k cannot have odd

values simultaneously, which was trivially avoided by the

sampling setup. Likewise, to the previous analyses the

chromatic numbers were considered as a bivariate function

of the two network parameters (N, k) and plotted as a
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surface plot (Fig. 8). In noticeable contrast to all earlier

surface plots (for small-world, scale-free, and modular

networks) here, the surface was found to be considerably

rough. In greater detail, for any given network size (N) the

increase in chromatic numbers was step-wise as an

ascending function of k, resembling staircase like patterns.

Similar trajectories are reminiscent of transitions involving

multiple intermediate steady states. Effectively, the whole

surface looks like a rocky mountain with approximately

planar valleys, in between hierarchically increasing steep-

ness to climb. In other words, the chromatic number for a

given network size (N) follows a characteristic hopping of

sequential linear increase and saturation. This physically is

again reflective of the remarkable absorptive property of

chromatic number, this time in regular graphs. That is to

say that for a particular size of regular graph, the same

chromatic number can absorb a range of average degrees,

that is an increasing number of connections, till a critical

point of disjuncture is reached, triggering a further increase

in chromatic number.

4.9 Computational complexity

As is well known, the graph coloring problem belongs to

the NP-hard category (which is most relevant for charac-

teristic k-regular graphs with a non-trivial average degree,

k[ 2) (Dailey 1980; McDiarmid and Sánchez-Arroyo

1994). An NP-complete problem will have both NP (non-

deterministic in polynomial time) and NP-hard compo-

nents, wherein an NP-hard algorithm contains at least one

component (say a subroutine) which is NP and is hence

said to be at least as hard as an NP (Arora and Barak 2009).

For these problems (e.g., problems in combinatorics), the

complexity of the algorithm, f(N) increases in a non-

polynomial manner (i.e., at least exponentially) with the

order of the problem, N,7 implying f(N) = O(2N). Again,

there could be many other problems (Karp 1972) with even

greater complexity than that of exponential, also falling

into the same ‘NP’ category. For example, it is trivial to

think of a ‘blind search’ for the very problem of finding the

chromatic number of a graph. In such an algorithm, N steps

will be required to color N nodes in turn, and hence, there

are N! non-degenerate sequences of nodes to be colored

sequentially in N steps, accounting for N! ways to color the

graph exhaustively. This will lead to a complexity of

O(N!)—which is even a higher-order function than that of

exponential (O(2N)).

The other category is said to be P-problems (determin-

istic in polynomial time) where the complexity follows an

order of a polynomial function (i.e., f(N) = O(Na); a[ 1).

To test whether the current algorithm is able to find the

approximate solution for the chromatic number with a

descent accuracy within the polynomial time domain,

regular graphs were constructed of size (N) varying from 4

to 512 following a geometric progression with a common

ratio of 2 (i.e., 4, 8, 16, 32 … 512). To simplify matters, the

other parameter, namely the average degree (k), was set to

N/2; chromatic numbers were calculated and the run time

was recorded for each run. By this setup, the complexity

(run time) could effectively be envisaged as a mono-variate

function of N, since k is automatically fixed upon fixing

N. Consistently throughout this entire calculation, the

program was run in its multiple iteration mode (in contrast

to the faster single iteration mode) to render the best pos-

sible accuracy of the predicted chromatic numbers. All the

calculations were consistently run under a 8 core dual

processor Intel(R) Xeon(R) CPU E5-2609 v4 @1.70 GHz

in CentOS, Linux. A plot (Fig. 9) of complexity versus

Fig. 8 Chromatic number of

regular networks. Chromatic

numbers are plotted by (as

surfaces) as a bivariate function

of the network size (N) and the

average degree (k) for regular

networks

7 The order of the problem refers to the graph-size (N) in the current

context of the ’graph coloring’ problem.
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order (N) fits exceptionally (R2 = 0.96) to a quadratic

polynomial (i.e., f(N) = O(N2)) which reflects the fact that

doubling the order of the problem would increase the run

time merely by a factor of 4. Fractional exponents were

sampled in an attempt to narrow-down the margin of the

polynomial functions (f(N) = O(Na)) that would be able to

envelope the complexity profile. An exponent of 1.7 was

found to be good enough for the purpose (Fig. 9a). In

dramatic contrast, the (theoretical) complexity derived

from a corresponding NP profile shoots exponentially as a

function of the same order (Fig. 9b). For exam-

ple, * 1.56 s is all that the algorithm takes (even in a

higher-level interpreted language like that of MATLAB) to

complete the run for a regular network of size 16 (with an

average degree of nodes set to 8), whereas the corre-

sponding NP run time is O(216) amounting to * 18.20

years. Thus, the run time maps to the polynomial time

domain even with the ‘multiple iteration mode’ of the

program. Due to the extreme difference in the two scales in

Fig. 9a, b (polynomial and non-polynomial), the NP-com-

plexity profile is independently drawn as a separate panel

(Panel B) and a section corresponding to small network

size (up to N * 20) is magnified in the inner window of

the same panel by means of comparison.

4.10 Comparison with other heuristics

There have been many attempts to come up with greedy

heuristics for finding out the chromatic number of a

graph—as surveyed in several reviews and comparative

studies, time and again (Kosowski and Manuszewski 2004;

Lai et al. 2006). There are the following existing heuristics

that are mostly used in applications. The ‘largest first’

heuristic finds and considers the nodes with largest degree

at first for coloring. The ‘independent set’ heuristic finds an

independent set of the graph and colors them with same

color. The ‘Connected sequential bfs’ and ‘Connected

sequential dfs’ heuristics color the nodes in the order in

which they are encountered in BFS (Breadth First Search)

and DFS (Depth First Search) traversal, respectively. The

DSATUR heuristic considers nodes in the order of their

saturation which has been explained later in details.

Finally, the ‘Random sequential’ heuristic colors the nodes

in random order.

Generalizations to the problem have also been proposed,

by means of partition (Fidanova and Pop 2016) and

selective (Demange et al. 2014) graph coloring problems,

implementing evolutionary algorithms like hybrid ant

colony optimization, etc., leading to improved perfor-

mances. Traditionally, two of the most popular heuristics

with contrasting strategies have been the largest first (LF)

(Welsh and Powell 1967) and the DSATUR (Brélaz 1979),

both of which find an approximate solution for the chro-

matic number with reasonably good accuracy. As is sug-

gested in the name, LF and its derivative strategies [e.g.,

Distributed LF (Hansen et al. 2004)] follow a descending

order of degrees to color nodes and use random seeds to

break ties in degrees wherever applicable. On the other

hand, DSATUR is unique in its strategy to change the order

of the nodes (http://cs.indstate.edu/tdu/mine1.pdf) based on

maximizing the saturation (or color unavailability) to select

new candidate node(s) to color (San Segundo 2012). In

Fig. 9 Complexity of the algorithm. Panel A of the composite figure,

plots the calculated complexity (f(N)) versus order (N) which fits

exceptionally (R2 = 0.96) to a quadratic polynomial (blue dashed

line). The predicted chromatic numbers (filled circles in 9A) are 2, 4,

6, 11, 22, 45, 89 and 178, respectively, in the ascending order of graph

size from 4 to 516 (see Main Text). The red dashed lines represent

fractional exponents (a—alpha) fed to the polynomial function

(f(N) * Na) in an attempt to envelope the complexity profile, wherein

an exponent of 1.7 was found to be optimal (see Main Text) (color

figure online)
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most cases, DSATUR is known to yield an optimal col-

oring for different types of graphs (Janczewski 2001; Lai

et al. 2006).

As it turns out, the present algorithm may be envisaged

as a meticulous combination of the search patterns of LF

and DSATUR, as it is compiled of two similar heuristics,

one that follows a descending order of degrees (likewise to

that of LF), and another that finds out the next neighboring

node to be colored, with a higher saturation or a less

number of available colors (likewise to DSATUR). How-

ever, the most salient feature of the present algorithm

remains to be its strategic choice to traverse along a

‘trailing path’ of consecutively connected nodes for the

entire course of coloring, which distinguishes it from both

LF and DSATUR. The adaption of the trailing path enables

the algorithm to always follow a path of connected nodes

(which is effectively a spanning tree) through the graph,

which, in turn, results in a continuous coloring scheme.

This continuous coloring scheme is critical to avoid

assigning redundant colors in potentially conflicting cases

that may arise due to a discontinuous local coloring

otherwise. Note that for such discontinuous coloring

schemes (e.g., LF and DSATUR), there is a greater chance

to assign redundant colors for conflict due to local coloring,

under the constraint of not assigning the same color to any

two adjacent nodes. However, keeping track of the color

saturation (or availability) for all the vertices at each trivial

step requires a bit more space (i.e., computer memory) in

the continuous coloring scheme (i.e., in the ‘trailing path’),

compared to the discontinuous ones.

One other salient feature of the present algorithm is that

it deletes a node along with all its incident edges subse-

quent to coloring it, which enables it to reevaluate and

update the true degrees of the remaining nodes in context

of the new (resultant) graph. Thus, if and when there is a

case of more than one disjoint components remaining to be

colored, the algorithm has the advantage (over the earlier

approaches) to color them simultaneously as if coloring

two independent (sub-)graphs, which would further reduce

the computational complexity.

While an efficient implementation of single iteration of

coloring of the graph in the present algorithm will run in

O((m ? n) log n) (where m is the average degree of nodes

and n is the graph size), same to that of the running time of

DSATUR, in addition, ‘trailing path’ explores not only one

sequence of possible coloring but various different coloring

sequences as may be potentially needed in a given context.

This is done by exploring different possible paths, when the

algorithm has to break a tie in either LF or DSATUR,

thereby attaining more precision and remaining flexible at

the same time. This is equivalent to running the algorithm

repeatedly and exploring a solution which has not been

explored before. Afterward, the minimum value (for the

approximate solution of the chromatic number) coming

from all (independent) runs is considered, where the

number of runs may be specified by the end user. Due to

the nature of the problem (NP-Complete), it is evident that

to get the optimal chromatic number of a graph, the algo-

rithm is required to be run exhaustively for an exponential

time. The advantage of the current approach is that the

choice of trade-off is left to the user so that the user can

actually decide as to how many different ways the itera-

tion(s) need to run. The more number of iteration is used,

the more is the probability of getting the optimal chromatic

number for a graph. For the cases where DSATUR and LF

find the chromatic number very easily, the algorithm can

detect and stop further iterations by itself. These algorithms

are heuristics rather than (merely) approximation algo-

rithms (Lewis 2016) as both of them use random seeds to

break ties in their corresponding parameters (i.e., color

availability and degree) wherever applicable. Likewise, the

involvement of random selection of neighbors and different

order of nodes to be colored makes the ‘trailing path’

algorithm a heuristic as well. In practice, it is seen that the

present algorithm performs almost always better than the

existing heuristics due to the meticulous amalgamation of

the two approaches.

4.10.1 A case study of performance comparison on regular
graphs

A detailed comparison of accuracy given by different

heuristics (Kosowski and Manuszewski 2004) can be found

in Table 1, wherein seven existing heuristics (H1 to H7)

represent strategies, named largest_first (H1), indepen-

dent_set (H2), Connected_sequential_bfs (H3), Con-

nected_sequential_dfs (H4), Smallest_last (H5),

Saturation_largest_first (H6) and Random_sequential (H7)

and TP represents the Trailing_path algorithm. For the

comparison, regular graphs of size (n) 4–512 were con-

structed, sampled at a geometric progression with a com-

mon ratio of 2 (i.e., 4, 8, 16 … 512), while the degree of

each node was set to the half of the graph size (i.e., k = n/

2). The choice of regular graphs for the comparison was

based on the well-known difficulty in finding the exact

solution for their chromatic number, due to the indis-

cernible nature of their nodes. Each heuristic was made to

run on each size of graph for 100 times, and for algorithms

returning non-identical values for the computed chromatic

number, the range of values obtained was recorded. Note

that there are methods (H1 to H6 in Table 1) which return

an identical value in each iteration and their performances

are equally suboptimal. Noticeably, its only heuristics

involving randomness which return different solutions on

different runs on the same graph(s), and, more importantly,

they are the ones that produce the best (lowest) solutions,
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or solutions closest to the chromatic number (Table 1). On

that note, the current algorithm unequivocally performs far

better than all other heuristics except for the ‘random

sequential’ (H7 in Table 1) approach to which it performs

comparably (if not better). And, it is highly dependent on

the context of a given graph as to which of the two

heuristics (both involving randomness) perform better. It is

important to take a note of that H1 and H6 in Table 1

represent LF and DSATUR, respectively, and, as is evident

from the table, the ‘trailing path’ (TP) algorithm unam-

biguously performs better than both LF and DSATUR.

The complexity of the current method, however, can not

be directly compared with that of the existing heuristics in

terms of computational run time (or elapsed time) due to

non-uniformity of the languages used to code them. More

precisely, the competing methods have been compiled in a

highly optimized python environment, implementing C,

C?? libraries (obtained from https://networkx.github.io/

documentation/networkx-1.1/install.html), whereas the

current (trailing path) algorithm has been coded in

MATLAB which is a higher-level interpreted language.

One of the prime reasons behind the choice of MATLAB is

because of its advanced and interactive graphics so that the

program returns the desired visual displays of the colored

graph, as a default, without having the necessity for addi-

tional coding or installing complex libraries. However, the

display can also be skipped (if not desired) from the user

interface by resetting appropriate variables. It takes even

less time for the program to run in a no-display mode. It is

noteworthy that even in such a high-level interpreted lan-

guage environment, the current MATLAB code takes about

only a minute to run on a massively large and complicated

regular graph of size 512 (with the degree of each node set

to 256) to output a solution appreciably close to the actual

chromatic number.

4.11 A special example of map coloring

As described vividly in the introduction, the very idea of

graph coloring was brought about from the context of

coloring of physical geographic maps which corresponds to

graphs embedded in a plane. In fact, a coloring problem of

such planar maps can actually be transformed into the

vertex coloring problem of their dual graphs. In these

maps, any geographic location is a node and a link exists

between those nodes which share a common ‘border’ (or

‘boundary’). In such a context, there are examples of

geographic maps consisting of several consecutively con-

nected territories (forming a closed loop/cycle) further

connected to a central territory (hub node). The corre-

sponding graph representation in such cases consists of one

or more overlapping closed triplet cliques (for any number

of neighboring nodes greater than one), and hence the

lower bound of chromatic number is trivially 3. However,

the upper bound of the chromatic number varies as the

number of members (neighbors) in the closed loop being

Table 1 Comparison of

accuracy among different

heuristics tested on regular

graphs

Graph size Degree Solution (minimum number of colors) Elapsed time (s) for TP

H1 H2 H3 H4 H5 H6 H7 TP

4 2 2 2 2 2 2 2 2 2 0.00814

(± 0.00041)

8 4 5 5 5 5 5 5 4 4 0.01965

(± 0.00055)

16 8 6 6 6 6 6 6 7 6 0.06010

(± 0.00145)

32 16 14 14 14 14 14 14 11–15 11–12 0.20721

(± 0.00520)

64 32 30 30 30 30 30 30 22–25 22–23 0.78163

(± 0.01583)

128 64 62 62 62 62 62 62 44–47 43–47 3.19818

(± 0.05391)

256 128 126 125 126 126 126 126 87–92 88–94 14.20557

(± 0.26600)

512 256 254 254 254 254 254 254 172–180 171–188 63.42610

(± 0.92533)

See Main Text for description of the methods. For H7 and TP, there are variations in the computed

minimum number of colors (beyond graph size 16) and in these cases the range of values returned has been

tabulated (i.e., the minimum and the maximum)
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even or odd. For an even cycle with a central hub node, the

chromatic number remains 3; however, for an odd cycle

with a central hub node, the graph has to be at least

4-colorable, due to topological constraints. Interestingly

and importantly, increase in the number of neighbors in the

cycle, in steps of two, does not further increase the chro-

matic number beyond these theoretical bounds (i.e., even:

3, odd: 4). They are therefore characteristically called 3-

and 4-chromatic planar graphs (Harary 1969), respectively.

Such graphs are prevalent geographically, and in the cur-

rent study, four examples of the latter case (viz., 4-chro-

matic planar graphs) have been presented (Supplementary

Figure S13) where the central hub nodes are represented by

Indian states: Madhya pradesh and Chhattisgarh; and US

states: Nevada, Georgia.

4.12 Perspective

Graph coloring is a manifestation of ‘partitioning’ of graph

(Andreev and Räcke 2004), wherein nodes (and edges) are

partitioned on the basis of their relative adjacencies. In

fact, the very concept of ‘partitioning’ is far more general

than to be restricted to graphs alone and rather serves as a

compartmentalization of any structural problem. A

prominent example may be the very well posed and yet

unsolved ‘protein folding’ problem (Dill and MacCallum

2012) in structural biology—where one of the major con-

cerns is the dynamic stability of the folded proteins (Roy

et al. 2015). This is common in any dynamic natural sys-

tem, and the current study reveals that ‘coloribility’ of

graphs can actually be envisaged as a parallel to stability

estimates in such dynamic natural systems. Different

packing modes (Basu et al. 2011), alternative to that of the

native protein fold, have been designed (Street and Mayo

1999) and experimentally verified (Berhanu and Masunov

2012) to be stable (Jiang et al. 2000) and active8 satisfying

certain overall ‘packing’ and ‘electro-chemical’ constraints

(2013). Such constraints include atomic packing density

(Gerstein et al. 1995; Tsai et al. 1999), global electrostatic

balance (Basu et al. 2012), shape complementarity of the

core residues with their local neighborhood (Banerjee et al.

2003; Basu et al. 2011), distribution of hydrophobicity/

polarity in terms of burial of solvent exposure of amino-

acid residues (Lee and Richards 1971) and may be a few

more (Basu et al. 2014). Likewise, different graph

topologies with appreciable variation in their correspond-

ing adjacencies can lead to the same partitioning, and

hence, the same coloribility results in identical chromatic

numbers. Furthermore, a small interval (D) of chromatic

number centering about a mean-value can actually

accommodate for a combinatorial expansion of morpho-

logically distinct non-identical networks—which could be

potentially generated either from a fixed set of network

parameters or from their slight variations. In noticeable

similarity, the aforementioned physico-chemical con-

straints in protein folding can accommodate for several

alternatively designed (packed) hydrophobic protein cores

(Munson et al. 1996), and hence different amino acid

sequences. On that note, there are well-characterized

‘twilight’ (Rost 1999) and ‘midnight’ (Pirun et al. 2005)

zones of pairs of proteins belonging to the ‘low sequence

identity—same fold’ category. The fact that graph parti-

tioning based on ‘coloribility’ is a stable and absorptive

property for structured networks (namely small-world,

scale-free, modular, etc.) allegorically matches with the

concept of stability in protein folding in terms of the

physico-chemical constraints, allowing for guided variation

in the designed amino acid sequences.

4.13 The plausible use of graph partitioning
in protein design—a case study

To demonstrate the above proposition by means of an

actual calculation, here we present a case study of designed

and corresponding native proteins. The designed proteins

were borrowed from Zhu et al. (2016) which aims to

backtrack the origin of a folded repeat protein toward a

possible intrinsically disordered evolutionary ancestor. The

desired protein fold was expected to contain a tetratri-

copeptide repeat (TPR) where the repeat units are helical

hairpins which interact via specific geometry involving

knobs-into-holes packing (Crick and IUCr 1953).

A ribosomal protein, namely RPS20, was chosen as a

representative of the TPR fold—which lacks an ordered

three-dimensional structure outside the ribosomal context

(Peng et al. 2014), thereby belonging to the class of

intrinsically disordered proteins. Two native experimental

high-resolution X-ray crystal structures from the protein

data bank (Berman et al. 2000) (PDB ID9: 1na0_A; and

2vqe_T) were fused to serve for the structural templates for

the in silico design of a series of multi-mutants (namely

M2, M4E, M4N, M4RD, M5 and M4NDC) spanning a

wide range of 8 potential candidate mutation sites. In

addition, other native proteins homologous to the repeating

units were also identified, serving to generate a sequence

consensus (PDB ID: 3ax3_A; 2v6y_A; 2v1s_A; 3ax3_A;

1wfd_A, 2rpa_A; 2v6y_A; 2v6y_B; 4a5x_A) and create a

profile based on that. A fraction of the designed mutants

was found to retain their stable folds in solutions out of
8 Designed protein cores have been found to follow a ’activity-

stability trade-off’, wherein, the higher stability is gained at the cost

of loosing activity and vice versa, analogous to the event of enthalpy-

entropy compensation. 9 The four letter accession code followed by the chain identifier.
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which the structure of three were solved experimentally by

X-ray crystallography (M4N: 5fzq, M4NDC: 5fzr, 5fzs).

To investigate the similarity/difference in contact net-

works found at the interior of these helical (all-a) proteins,

a previously standardized protocol (Basu et al. 2011; Roy

et al. 2015) was implemented based on pairwise surface

complementarity and overlap (Banerjee et al. 2003) cutoffs

set to completely or partially buried interacting amino acid

side-chains to filter out the real contacts. Thus, each protein

interior was mapped to one or more surface contact net-

works (Basu et al. 2011) sustaining specific geometry

consistent with the native fold. The minimum network size

considered was 3 with no limit set to the maximum. The

collection of these networks was then subjected to the

identification of topological variability (Basu et al. 2011)

by implementation of the motif identifier (as defined in

Sect. 4.1) along with the calculation of their chromatic

numbers. As expected, the explored topological space from

these networks showed considerable variability giving rise

to a large set of unique and distinct packing motifs, mostly

falling into the motif-families (Basu et al. 2011) previously

explored within globular proteins (e.g., trees, 3 cliques,

etc.). Out of a collection of 28 contact networks obtained

from a list of 12 (native ? designed) proteins, 22 unique

graphs (motifs) could be identified, 19 of which were found

just once in the list, 2 (namely, trivial linear trees con-

sisting of 5 and 7 nodes) were found twice, and the most

trivial possible motif, namely the linear tree of 3 nodes

(1 * 2: 2, 2 * 1–1: 1), found five times (Supplementary

Table S4). Regular graphs were absent throughout, which

confirms the correctness of the topological variability

accounted for by the motif identifier (as elaborated in

earlier sections). In fact it is worth making a note that other

than the simple 4 cycles, all other k-regular graphs (k[ 2)

are structurally forbidden due to atomic steric constraints

attributed to protein contact networks (Basu et al. 2011).

Most intriguingly, all the motifs found in the current cal-

culation were either at least 2- or 3-colorable irrespective

of their size and topological variability (Supplementary

Table S4). Visual inspection of the motifs (Fig. 10, Sup-

plementary Figure S13) confirmed that all the graphs so

obtained were planar, without a single exception—which is

reflected in their characteristic low values of the chromatic

numbers (2 or 3). This result is also consistent with the

theory of atomic steric clashes among tightly packed amino

acid side-chains leaving almost no realistic scope for

mutually intersecting edges on a plane10 to occur within

folded proteins. This effectively means that there is a

theoretical upper bound to be considered for chromatic

numbers for contact networks within folded proteins,

which is four. Recall that four colors are sufficient to color

any map (Appel and Haken 1977) which essentially cor-

responds to the coloring of its dual planar graph. This

should serve as an important rule of thumb in the general

guidelines for protein design. Furthermore, the study also

highlights the plausible use of graph partitioning (chro-

matic number) as a critical bottleneck filter in a computa-

tional pipeline aiming for directed design of proteins. The

results strongly support the theory of alternative packing

modes leading to the same stable fold within native and/or

designed protein interiors.

4.14 Future application

In future, the current algorithm may also be designed to

handle additional constraints in the ‘graph coloring prob-

lem’ applicable to highly specific graphs. For example, say,

all nodes distant from each other having a certain ‘high’

degree be assigned the same color. This will benefit to

visually analyze the graph in greater detail, and identify, at

a glance, those nodes having the same ‘high’ degree,

analogous to identifying nucleation sites. The physical

interpretation will of course be contextual. It is likely that

these nodes share common implicit properties, thereby

falling not only to the same color class but also attaining

the same degree. Also, in a follow-up task for the future, a

separate (third) heuristic may be designed to break the

current ties between nodes having both an identical degree

and an equivalent color saturation—which is done ran-

domly in the present algorithm.

5 Conclusion

Graph coloring is a challenging problem in mathematics

and computer science. The current study presents an ele-

gant approximate solution to the problem by the strategic

implementation of a ‘trailing path’ (effectively, a contin-

uous coloring scheme), alongside meticulously combining

two previous approaches to lead to a novel compound

heuristic and a corresponding software code (in MATLAB

and Octave). A single iteration of the program returns

optimally accurate solutions, favorably comparing to the

state of the art (actually performing better than most

heuristics in the business). The program can also be run in

a multiple iteration mode to make the algorithm trail

through different random paths of consecutively connected

nodes (effectively mapping to spanning trees of the graph)

while minimizing the approximate solution for the chro-

matic number, aimed potentially for a better accuracy.

Setting this (desired) trade-off between accuracy and run

time remains a choice of the user. The program consis-

tently hits running times of the polynomial order with

respect to the input graph size. The study of graph10 By definition, edges do not intersect in planar graphs.
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partitioning in random, structured and real-world networks

shows its remarkable stability and absorptive property

across a wide variety of graph topologies. This is an

important finding in the context of compartmentalization in

any structural problem. The software can directly be

implemented in the targeted design of real-world networks.

For example, interior designers of different disciplines

should be potentially benefited by the software. Further-

more, there are several day-to-day real-life problems like

guarding an art gallery, round robin sports and aircraft

scheduling, etc., which should also be addressed ade-

quately by the general algorithmic solution. We also dis-

cuss the interesting special cases of four chromatic planar

graphs in the context of map coloring. Finally, the appli-

cation of graph partitioning in compartmentalization has

been demonstrated by means of an actual calculation in

structural biology, wherein the chromatic number was

envisaged as a measure of stability and uniqueness in

protein contact networks, effectively serving as a plausible

bottleneck filter in a protein design pipeline.
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