
DelPhi Suite: New Developments and Review of
Functionalities
Chuan Li,*[a] Zhe Jia,[b] Arghya Chakravorty,[b] Swagata Pahari,[b] Yunhui Peng,[b]

Sankar Basu,[b] Mahesh Koirala,[b] Shailesh Kumar Panday,[b] Marharyta Petukh,[c]

Lin Li,[d] and Emil Alexov *[b]

Electrostatic potential, energies, and forces affect virtually any pro-
cess in molecular biology, however, computing these quantities is
a difficult task due to irregularly shaped macromolecules and the
presence of water. Here, we report a new edition of the popular
software package DelPhi along with describing its functionalities.
The new DelPhi is a C++ object-oriented package supporting vari-
ous levels of multiprocessing and memory distribution. It is dem-
onstrated that multiprocessing results in significant improvement
of computational time. Furthermore, for computations requiring

large grid size (large macromolecular assemblages), the approach
of memory distribution is shown to reduce the requirement of
RAM and thus permitting large-scale modeling to be done on
Linux clusters with moderate architecture. The new release comes
with new features, whose functionalities and applications are
described as well. © 2019 The Authors. Journal of Computational
Chemistry published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26006

Introduction

Electrostatics is an essential component of numerous phenomena
occurring in molecular biology.[1,2] Each atom of biomolecules
carries a partial charge; thus, electrostatic interactions are present
at atomic level of details. Further, the electrostatic interactions, being
long-range, dominate other forces when atoms or molecules are
separated at distances longer than typical bond lengths. A particular
example is macromolecular binding and recognition.[3–6] Another
example where electrostatics is the main factor is pH-dependence
of folding and binding.[7–11] The list can be extended to include
nonspecific ion binding,[12–14] pKa calculations,[15–17] and salt-
dependent effects.[18,19]

However, modeling electrostatic potential and energies in sys-
tems containing macromolecules made of millions of atoms and
more in the presence of water molecules and mobile ions is an
extremely complicated task. Explicit solvent modeling requires sig-
nificant computational resources, takes a long time, and faces
questions about the convergence. Alternatives are offered by
implicit solvent models such as Poisson Boltzmann (PB) and Gener-
alized Born approaches.[20–25] Particularly, PB approach has been
explored by many researchers resulting into various software such
as DelPhi,[26,27] PBSA,[28] MIBPB,[29] APBS,[30] and others.[31,32]

Here, we report a complete renovation of DelPhi software and
associated resources.[26] The new DelPhi C++ is redesigned to uti-
lize the object-oriented (OO) programming technique and other
unique features provided by C++ to transform the single-model
single-solver code into a multimodel multisolver platform with
diverse user interfaces, unified data encapsulation and accesses,
and flexible model-solver pairing mechanism. DelPhi C++ package
integrates three implementations (regular single-CPU, multi-
threaded, and multi-CPU parallel) in one set of code, allowing
users to compile one or more desired implementations with mini-
mal effort. Numerous new features are added expanding DelPhi

capabilities to model various phenomena in molecular biology.
Here, we briefly outline these new features, provide examples and
access the accuracy of calculations against analytical solutions at
different grid resolutions. Furthermore, various methods, software,
and webservers were developed utilizing DelPhi. These resources
include changes of folding (SAAMBE[33] method) and binding
(SAAFEC[34,35] and SAMPDI[36]) free energies due to mutations,
predicting nonspecifically bound ions (BION[12] method),
DelPhiPKa[37,38] method and webservers for predicting pKa’s in
proteins, RNAs and DNAs, and calculating the electrostatic forces
between macromolecules (DelPhiForce).[39,40]

Methods

DelPhi C++ is a complete renovation of DelPhi FORTRAN 95 ver-
sion.[26] It adopts the same user interfaces (UI), but is easier to
maintain, easier to be incorporated in or to integrate with other

[a] C. Li
Department of Mathematics, West Chester University of Pennsylvania, West
Chester, Pennsylvania, 19383
E-mail: cli@wcupa.edu

[b] Z. Jia, A. Chakravorty, S. Pahari, Y. Peng, S. Basu, M. Koirala, S. K. Panday,
E. Alexov
Department of Physics and Astronomy, Clemson University, Clemson, South
Carolina, 29634
E-mail: ealexov@clemson.edu

[c] M. Petukh
Department of Biology, Presbyterian College, Clinton, South Carolina, 29325

[d] L. Li
Department of Physics, University of Texas at EI Paso, Texas, 79968

Contract Grant sponsor: National Institute of General Medical Sciences;
Contract Grant number: R01GM093937

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
© 2019 The Authors. Journal of Computational Chemistry published by Wiley
Periodicals, Inc.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2502–2508 WWW.CHEMISTRYVIEWS.COM2502

https://orcid.org/0000-0001-5346-0156
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcc.26006&domain=pdf&date_stamp=2019-06-25


third-party software, without jeopardizing its efficiency when
solving the Poisson-Boltzmann Equation (PBE). It can be down-
loaded from http://compbio.clemson.edu/delphi.

In this section, the architecture of DelPhi C++, together with
its new features, will be demonstrated. Interested users and
developers are also directed to the online DelPhi developer man-
ual http://compbio.clemson.edu/delphiDir/developer-manual/ for
more details.

Overall description of DelPhi C++ code architecture

DelPhi C++ is an object-oriented code. The overall code architec-
ture is built over three base classes: (a) an IO class CIO for diverse
inputs and outputs; (b) a twin abstract classes IDataContainer and
IDataMarshal, which allow variables of various types, including
user-defined variables, to be shared among multiple classes; and
(c) an abstract class IAbstractModule, which provides a prototype
for all task-related derived classes, each of which carries out a par-
ticular task. Details about the code architecture are provided in
the supplementary material.

Parallelization schemes and memory distribution

One of the most important new developments of DelPhi C++ is
that the new version, v.8.4, supports three types of im-
plementations (regular single-CPU, multithreaded, and multi-CPU
parallel). They are integrated in one set of code (details are pro-
vided in the supplementary material). DelPhi users can now gener-
ate executable of any of these three implementations from the
same set of code. All three implementations produce results at the
same precision. A guideline of the choice of a particular implemen-
tation is provided here: In case of relatively small system requiring
grid size of less than 3003 grid points, the best choice is the regular
single-CPU implementation. For a medium-size problem requiring
more than 3003 up to approximately 6003 grids, OpenMP multi-
threaded parallel implementation is most suitable, and can be run
on either a PC or a Linux cluster. When the number of grid points is
higher than 6003, it is a large-size problem with a high memory
demand, which may exceed the capacity of most PCs. Given its lim-
ited computing power, the execution time to solve such a large-
size system on a single PC could be intolerably long. It is advised to
solve such types of cases using a high-performance computing
(HPC) cluster, which is usually equipped with thousands or even
tens of thousands of CPUs. It is suggested to use the MPI multi-
CPU implementation to utilize computing power and memory of
multiple computing nodes on the HPC cluster to significantly accel-
erate the calculations.

The parallelization schemes carried out in OpenMPmultithreaded
and MPI multi-CPU implementations are described in the supple-
mentary material (Supporting Information Fig. S1; Table S1 and S2).
An important component is the newmemory distribution technique
applied inMPImulti-CPU protocol that reduces thememory require-
ments in case of very large systems requiring more than 6003 grid
points (Supporting Information Fig. S2).

Definitions of testing parameters

The following quantities are used to assess the performance of
OpenMP- and MPI-parallelized implementations of DelPhi C++:

Speedup is defined to be the ratio of the execution time of a
single-CPU program to the execution time of a (OpenMP- or MPI-)
parallelized program running on multiple CPUs. The higher the
speedup is, the faster the parallel program is. In principle, a linear
speedup is expected in the best case, that is, speedup equals the
number of CPUs being utilized. However, in practice, it is known
by the Amdahl’s Law that, for any well-designed parallel algorithm,
linear speedups can be achieved only when the parallel program
runs on small numbers of CPUs, while the speedup eventually
reaches a peak value and plateaus out when the parallel program
runs on large numbers of CPUs.

Efficiency is defined to be the ratio of the speedup to the
number of adopted CPUs. It estimates how well-utilized the
CPUs are in solving the problem, compared to how much effort
is spent in communication and synchronization. The efficiency
varies between 0 and 1. Linear speedup corresponds to the
highest efficiency of 1, while an efficiency close to 0 indicates
that most efforts of CPUs are consumed by communication and
synchronization.

RAM reduction percentage (RRP) is defined to be the ratio of
the amount of RAM used by one CPU, which utilizes the largest
amount of memory among all CPUs in an MPI-parallelized pro-
gram, to the amount of RAM used by a single-CPU program.
One goal of the MPI-parallelized program is to reduce the high-
memory requirement on one computing node when solving
the PBE for a large system. In the MPI-parallelized implementa-
tion, instead of requiring large amount of memory on one com-
puting node (typically the master node), the required memory
is distributed as evenly as possible on multiple computing
nodes. This memory reduction allows the MPI-parallelized pro-
gram to be executed not only on the computing nodes
equipped with large memory, but also on moderate clusters
with less memory. RRP is a quantity used to measure the reduc-
tion of memory required to run the MPI-parallelized program.

Results

Benchmarks reported in this section were all performed on the
HPC cluster Palmetto https://www.palmetto.clemson.edu/palmetto/
located at Clemson University. Palmetto cluster has over 2020 com-
puting nodes with various hardware configuration. Some nodes
are more powerful than the others in terms of CPUs and RAMs. In
order to execute the program in a timely manner, benchmarks
were conducted on various types of computing nodes. Detailed
hardware configuration of adopted computing nodes will be pro-
vided in each subsection.

Single-CPU and multi-CPU DelPhi programs were tested on
examples of small-, medium-, and large-size cases. All programs
have been assured to produce identical electrostatic potentials
and energies on all tested examples. Therefore, here we are
only focusing on comparing computational costs. In order to
provide accurate comparison, each identical run was repeated
three times, and the averaged running time is used for the
reported speedup and efficiency.

Parallelization (speedup, efficiency, and memory usage
benchmarking). When the system size is larger than 3003

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2502–2508 2503

http://compbio.clemson.edu/delphi
http://compbio.clemson.edu/delphiDir/developer-manual/
https://www.palmetto.clemson.edu/palmetto/
http://WWW.C-CHEM.ORG


grids, it is advised to use either OpenMP or MPI version of the
DelPhi program. Here, we test the efficiency of OpenMP and
MPI implementations using a large protein (PDB ID: 4UDF[41]) of
more than 38,000 amino acids and 300,000 heavy atoms. Both
linear and nonlinear PBEs are solved and the three aforemen-
tioned quantities: speedup, efficiency, and memory reduction
percentage, are benchmarked. The benchmarking was per-
formed on a typical everyday load of Palmetto supercomputer
Linux cluster, each run was repeated three times, and results
averaged.

The OpenMP DelPhi program is tested first. The OpenMP pro-
gram is a multithreaded version of the single-CPU program. It
utilizes the computing power of multiple CPUs equipped on
one computing node and thus uses the same amount of mem-
ory as that used by the single-CPU implementation. Therefore,
only speedup and efficiency were benchmarked for the
OpenMP DelPhi implementation. The parameter scale was fixed
to be 1.0 (i.e., one grid per angstrom), resulting in a total of
5613 ≈ 177 million grids. The size of the problem is selected to
represent a typical medium-size problem. For benchmarking,
we selected a particular computing node, Dell R740 server, Chip
model Intel Xero 6148G, which is equipped with 40 cores all-
owing us to utilize up to 32 CPUs. The obtained speedup and
efficiency when solving the linear and nonlinear PBEs on the
protein 4UDF are presented in Figure 1.

Figure 1 shows that the OpenMP DelPhi implementation signifi-
cantly reduces the computational cost of solving the linear and
nonlinear PBEs. The achieved speedups on 32 CPUs are 8.6 and
9.4 for linear and nonlinear PBEs, respectively. In terms of absolute
execution time, the running time of the single-CPU implementa-
tion is 2 h, while the OpenMP implementation completes the run
in 11 min, when solving the linear PBE. Similarly, the execution
times for single-CPU and OpenMP implementations are 3.5 h and
22 min, respectively, for solving the nonlinear PBE.

One should bear in mind that the OpenMP program does
not reduce the RAM usage compared with the single-CPU pro-
gram since it can only utilize the memory equipped on the
same computing node. This makes the OpenMP implementa-
tion most suitable for solving medium-size problems with sizes
ranging from 3003 to 6003 grids. When the problem’s size is
extremely large (> 6003 grids), it requires significant amount of
RAM and can last for more than a day. In this case, it is advised
to utilize the MPI DelPhi implementation to handle the most
computationally expensive tasks.

In order to demonstrate the performance of the MPI DelPhi
implementation, the parameter scale is doubled (scale = 2.0) in
the example of protein 4UDF, resulting in a total of 11233 ≈ 1.4
billion grids. The MPI DelPhi program is then used for solving the
linear and nonlinear PBEs. Here, we benchmark speedup, effi-
ciency and RRP. It was done by allocating one CPU per computing
node for all MPI tests. Various combinations of computing nodes
on the Palmetto cluster were explored to examine the robustness
of results. The achieved benchmarks of speedup, efficiency, and
RRP are shown in Figure 2.

Several important observations can be made analyzing the
results from MPI benchmarking. First, since the MPI implemen-
tation uses CPUs across multiple computing nodes, this allowed

us to use more CPUs (as compared with OpenMP benchmark).
As a result, the MPI implementation achieves higher speedups
(29 and 34 times faster for solving linear and nonlinear PBEs,
respectively, on 64 CPUs), compared with those obtained by
the OpenMP implementation (8.6 and 9.4 times faster for solv-
ing linear and nonlinear PBEs, respectively, on 32 CPUs). Sec-
ond, the algorithm implemented to parallelize the molecular
surface construction works more effectively when the number
of utilized CPUs is proportional to a power of two (data not
shown). In this case, the algorithm splits the computational
domain into subdomains evenly in x-, y-, and z-directions so
that the workload on each CPUs is well balanced. Third, the
RRP of the MPI implementation does not decrease proportion-
ally as the number of CPUs increases. It decreases rapidly when
a small number of CPUs is used and approaches to its minimal
value around 55%‑60% as the number of CPUs increases. The
peak usage of RAM in the MPI program is found to occur after
solving the PBEs for potentials at all grids (data not shown). At
this point, the calculated potentials are collected from distrib-
uted CPUs and assembled into one piece by one CPU, and then
distributed again to be saved onto multiple computing nodes.
It is implemented in this particular manner in order to lower
the data traffic among CPUs and balance the efficiency and
RAM consumption on one computing node.

The above results showed that Delphi C++ (Open MP and
multi-CPUs implementations) can handle large systems in which
modeling requires more than billion grid points, both in terms of
time of calculations and memory requirements for the computer
performing the job. Given that many researchers nowadays are
interested in modeling large macromolecules and their assem-
blages, this development will definitely help. To illustrate the com-
plexity of electrostatic potential and electrostatic field distributions
in such large assemblages, in Figure 3, we show the electrostatic
field lines generated using Delphi for the human parechovirus.
One can see that the distribution is highly inhomogeneous and
cannot be modeled without solving PBE.

Assessing DelPhi C++ accuracy. Achieving high computational
speed and extending DelPhi capabilities to handle large systems is
an important development, however, it is equally important to
deliver correct solutions. To check the accuracy of DelPhi C++ cal-
culated electrostatic features, such as potential, energy, and elec-
trostatic field, we benchmarked it against analytical solutions. The
examples are provided in the supplementary material and are
available for download from http://compbio.clemson.edu/delphi.
The results indicate that depending on geometry, charge distribu-
tion and electrostatic quantity being benchmarked, DelPhi C++
can achieve highly accurate solutions even at a scale of 1 grid/Å
(Supporting Information Figs. S3, S4, and S5).

Newly added features and resources associated with DelPhi

In this section, we describe the newly added features in the
DelPhi package. They either represent new treatment of a par-
ticular component of the framework of PBE or a new quantity
delivered via DelPhi modeling. Details are provided in the sup-
plementary material.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2502–2508 WWW.CHEMISTRYVIEWS.COM2504

http://compbio.clemson.edu/delphi
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


Gaussian-based smooth dielectric function and its
applications. Traditional PBE approaches model the space of
macromolecules as low dielectric constant volume cavity
immersed into a high dielectric space of water phase. These
approaches do not take into account the inhomogeneity of both
the macromolecule and the space between solute-solvent. Here,
we specifically do not use the term “molecular surface” since we
argue that there is no sharp border between macromolecule and
the water. Instead we would like to consider that there is a
smooth transition between macromolecule and water phase. Thus,
in the Gaussian-based approach atom, densities are presented as
Gaussian density function.[42,43] Then using the resulting density
function, one delivers the dielectric “constant” as a function of
space (details are provided in the corresponding references[42,43])
(Supporting Information Fig. S6). Such approach results in a
smooth dielectric function that reflects the following physical
expectations: low-packed macromolecular regions as protein’s sur-
face are assigned higher dielectric constant compared with the
hydrophobic core; the cavities inside the macromolecule are
assigned dielectric constants higher than the rest of macromole-
cule but smaller than bulk water; and there is a smooth transition
of the dielectric constant from macromolecule to water, to reflect
that surface waters are not so free to move compared with bulk
waters. This approach is particularly useful in modeling protein–
protein binding[44] and pKa’s modeling.[37]

Mobile ions treatment via born solvation term in PBE. The
above approach does not draw sharp dielectric border between
solute and solvent which raises a question about the treatment of
the mobile ions in water phase. In traditional approaches, one

treats the mobile ions in the water phase via modeling their den-
sity with Boltzmann factor. However, this requires a knowledge of
what part of the space is pure water and what part is taken by sol-
ute. Arguing that there is no sharp border between the solute and
the solvent, we introduced an additional term in the traditional
PBE. Instead of using geometrical factors to determine what part
of the space the mobile ions can be present in, we penalize the
presence of mobile ions via a desolvation penalty term which
makes it difficult for the ions to enter macromolecule (Supporting
Information Fig. S7). Details are provided in the corresponding
paper,[45] where we demonstrate that this approach correctly pre-
dicts the salt-dependence of protein–protein binding.

Zeta-potential. Inmost of the cases, one is interested to compute
the electrostatic potential inside themacromolecule ormacromolec-
ular complex. However, equally important is the potential in the
space outside the macromolecule, particularly referring to Zeta-
potential. Zeta potential is an important characteristic that is used to
assess the propensity of aggregation—if the corresponding parti-
cles/macromolecules have high Zeta-potential, they are expected
not to aggregate due to mutual electrostatic repulsion. Motivated
by such an importance, we developed a new DelPhi option that
allows the users to compute both, the distribution of electrostatic
potential at a surface located at a user specified distance away from
van der Waals surface and the corresponding Zeta-potential
(Supporting Information Fig. S8). Details are described in the
corresponding paper.[46]

Surface-free approach of computing pKa’s of proteins, RNAs,
and DNAs. Computing proton equilibria or predicting pKa’s of
ionizable group has been explored by many researchers. In
terms of continuum approaches, all other approaches use the
standard PBE protocol that draws a sharp border between sol-
ute and solvent. Taking advantage of the Gaussian-based
approach, we developed a protocol that computes pKa’s of ion-
izable groups of proteins, RNAs, and DNAs without defining
molecular surface, so termed surface-free pKa approach[37,38]

(Supporting Information Fig. S9). It was shown to outperform
the traditional approaches in predicting pKa’s of both wild-type
proteins and mutant proteins. Recently, this approach was
updated to include predictions of pKa’s of polar groups and to
allow for including salt effects.[47] In the new releases of
DelPhiPKa, we demonstrate that our approach outperforms all
existing pKa predictors, including explicit water models, in cal-
culating pKa’s of Cys residues.[47]

DelPhiForce. Electrostatic forces are the most long-range
forces in molecular biology, therefore, their modeling is impor-
tant for understanding various molecular phenomena, perhaps
the most relevant being molecular recognition. DelPhi’s FRC
module was upgraded to allow for more accurate computation
of electrostatic potentials at given points in space.[39] This was
combined with scripts that allow the users to compute electro-
static force between two molecules, or in general, between two
user-specified entities (pairs of residues, receptor-ligand, etc.)
(Supporting Information Fig. S10). It was demonstrated that the

Sp
ee

du
p

Ef
fic

ie
nc

y

1 4 8 12 16 20 24 28 32

2.5

5.0

7.5

0.4

0.6

0.8

1.0

Number of CPUs

PBE Linear Nonlinear

Figure 1. Numerical benchmarks of solving the Linear and Nonlinear PBEs on
aprotein with PDB ID: 4UDF using Open MPDelphi. Speedup (top panel) and
efficiency (bottom panel). [Color figure can be viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2502–2508 2505

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


electrostatic forces not only guide the partners together, but
also adjust their mutual orientation prior physical binding.[39]

Computing folding free energy changes due to mutations
(SAAFEC method). Solvation energy is an indispensable compo-
nent of the total free energy of folding; therefore, its accurate com-
puting reassures accurate predictions of the folding free energy.[33]

Of particular interest for personalized medicine is modeling of the
effect of nonsynonymous variants (amino acid variants or mutants)
on the folding free energy.[48–52] This interest is motivated by the
observation that there is a significant correlation between the pro-
pensity of a given mutation to be pathogenic and the magnitude of
the folding or binding free energy change.[51] To address such inter-
est, we developed “Single Amino Acid Folding free Energy Changes
(SAAFEC) based on a knowledge-modified Molecular Mechanics
Poisson-Boltzmann (MM/PBSA)” approach[33] (Supporting Informa-
tion Fig. S11), which was benchmarked against experimentally mea-
sured folding free energy changes provided in ProTerm database.[53]

Modeling protein–protein binding free energy changes
(SAAMBE method). Similarly, as outlined above, we developed
DelPhi-based approach of computing binding free energy changes

caused by amino acid substitutions.[35] The method described as
“single amino acid mutation based change in binding free energy
(SAAMBE)” utilizes 3D structure of the corresponding protein–
protein complex and utilizes two approaches: sequence- and
structure-based approaches. Thus, the method has two compo-
nents: a MM/PBSA-based component and an additional set of statis-
tical terms (Supporting Information Fig. S12). Details are provided in
the correspondingmanuscript.[35]

Modeling protein-RNA/DNA binding free energy changes
(SAMPDI method). Protein-nucleic acids interactions are essential
components of cellular interaction networks and frequently are
implicated in human diseases.[36] This motivated us to develop a
method “single amino acid mutation binding free energy change
of protein-DNA interaction (SAMPDI)” method, that computes the
change of the protein-DNA/RNA binding free energy caused by
mutations (Supporting Information Fig. S13). Details are provided
in the original paper.[36]

Multiscale sampling method (MSSM). The multiscale approach
is capable of modeling the binding process between large and
small biological objects.[54] The MSSM specifically targets efficiency
improvements in the electrostatic energy calculations. We devel-
oped a novel algorithm that first calculates electrostatic energy at
a course-grained resolution of the entire system. Then, it transfers
the information from the entire environment to a focused local
region of interest and calculates the electrostatic energy at a sig-
nificantly finer resolution. Based on the precalculated energies, the
MSSM applies Monte Carlo procedure to evaluate the probabilities
of each pregenerated conformation and then evaluates plausible
pathway of small object binding onto the large one (Supporting
Information Fig. S14).

Delphi webserver. To further facilitate DelPhi’s usage, we devel-
oped a DelPhi webserver, using which inexperienced users may
submit their jobs without having to familiarize themselves with
the DelPhi’s stand-alone program http://compbio.clemson.edu/
sapp/delphi_webserver/.[55] Through self-navigating system with
a help menu, the server provides all necessary parameter files for
a DelPhi run. It also allows experienced users to upload their cus-
tom parameters to run DelPhi on the webserver. Examples are
provided as well (Supporting Information Fig. S15).

DelphiPKa. It is a webserver that predicts the pKa’s of proteins,
RNAs, and DNAs.[38,47] The pKamethod was tested against two large
databases of experimentally determined pKa’s (PPD database:
34 proteins with 302 titratable residues and pKa-cooperative data-
base: SNase mutants of 109 pKa’s). The databases include a variety
of cases from strongly coupled titration sites to almost isolated and
deeply buried sites. The overall benchmark over three different force
field parameters (Amber, Charmm and OPLS) resulted in a
RMSD = 0.78pK and RMSD = 1.6pK for PPD and pKa-cooperative
databases, respectively. The preliminary results are among the top
in the field. The method is implemented into a webserver, which is
easy to navigate and provides various outputs, including predicted
pKa’s and a structure with proton position assigned at user specified
pH. The method and the webserver allow predicting pKa’s of

Figure 2. Numerical benchmark of solving the Linear and Nonlinear PBEs on
aprotein with PDB ID: 4UDF using MPI Delphi. Speedup (top panel),
efficiency(middle panel) and RAM reduction percentage (bottom panel).
[Color figure can be viewed at wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2502–2508 WWW.CHEMISTRYVIEWS.COM2506

http://compbio.clemson.edu/sapp/delphi_webserver/
http://compbio.clemson.edu/sapp/delphi_webserver/
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


proteins, RNAs, and DNAs. Link: http://compbio.clemson.edu/pka_
webserver/

SAAMBE webserver. Single amino acid mutation related change
of binding energy (SAAMBE) is a webserver, which addresses the
demand for computational tools of predicting the effect of single
amino acid substitution on the binding free energy of protein
complexes.[34] It is based on the fast (<< 1 min) and modified
MM-PBSA protocol that is successfully tested and optimized for
more than thousand experimental data points from SKEMPI data-
base. Link: http://compbio.clemson.edu/saambe_webserver/

SAAFEC webserver. Single amino acid folding free energy
changes (SAAFEC) is an approach for calculating folding free
energy changes caused by missense mutations.[33] The method is
based on weighted MM-PBSA method with weight coefficients
optimized against experimental data from the ProTherm database.
Furthermore, the prediction formula is extended to include various
biophysical terms to enhance the performance. Link: http://
compbio.clemson.edu/SAAFEC/

SAMPDI webserver. It provides fast and accurate predictions of
the effects of single amino acid substitution on the binding free
energy of protein-DNA complex.[36] This method utilizes modified
molecular mechanics Poisson-Boltzmann Surface Area (MM/PBSA)
approach along with an additional set of knowledge-based terms
delivered from investigations of the physicochemical properties of
protein-DNA complexes. An important feature is applying DelPhi’s
Gaussian-based smooth dielectric function to calculate the change
of solvation energy. Link: http://compbio.clemson.edu/SAMPDI/

DelPhiForce webserver. This web server implements DelphiForce,
which is a DelPhi-based script, that allows one to calculate the elec-
trostatic force between two objects, such as proteins, DNAs, lipids,
small molecules, and so forth.[40] Users can also generate vector rep-
resentations of electrostatic force between the two objects. Link:
http://compbio.clemson.edu/delphi-force/

Conclusions

In this work, the most recent developments of the scientific
software DelPhi are presented. The new DelPhi program has
become a package, which allows users to generate single- and
multi-CPU executables from one source code. The newly
object-oriented programming design, as well as the newly
added features, upgrade the DelPhi program from a single CPU
PBE solver to a multimodel and multisolver platform, preparing
it for more complicated computational tasks in the future.

Acknowledgments

The work was supported by a grant from NIH, grant number
R01GM093937. We thank Chitra Karki for the help preparing fig-
ures and Morgan Willard for proofreading the manuscript.

Keywords: DelPhi � Poisson-Boltzmann equation � electrostatics �
computer code parallelization � dielectric constant

How to cite this article: C. Li, Z. Jia, A. Chakravorty, S. Pahari, Y.
Peng, S. Basu, M. Koirala, S. K. Panday, M. Petukh, L. Li, E. Alexov.
J. Comput. Chem 2019, 40, 2502–2508. DOI: 10.1002/jcc.26006

Additional Supporting Information may be found in the

online version of this article.

[1] G. A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Chem. Rev. 2014, 114, 779.
[2] B. Honig, A. Nicholls, Science 1995, 268, 1144.
[3] Z. Zhang, S. Witham, E. Alexov, Phys. Biol. 2011, 8, 035001.
[4] J. Batra, A. Szabo, T. R. Caulfield, A. S. Soares, M. Sahin-Toth,

E. S. Radisky, J. Biol. Chem. 2013, 288, 9848.
[5] H. Ikeuchi, M. E. Meyer, Y. Ding, J. Hiratake, N. G. Richards, Bioorg. Med.

Chem. 2009, 17, 6641.
[6] X. Huang, F. Dong, H. X. Zhou, J. Am. Chem. Soc. 2005, 127, 6836.
[7] E. Alexov, Eur. J. Biochem. 2004, 271, 173.
[8] A. Isvoran, C. T. Craescu, E. Alexov, Eur. Biophys. J. 2007, 36, 225.
[9] R. C. Mitra, Z. Zhang, E. Alexov, Proteins 2011, 79, 925.

[10] A. V. Onufriev, E. Alexov, Q. Rev. Biophys. 2013, 46, 181.
[11] K. Talley, E. Alexov, Proteins 2010, 78, 2699.
[12] M. Petukh, T. Kimmet, E. Alexov, Bioinformatics 2013, 29, 805.
[13] M. Petukh, M. Zhang, E. Alexov, J. Comput. Chem. 2015, 36, 2381.
[14] M. Petukh, M. Zhenirovskyy, C. Li, L. Li, L. Wang, E. Alexov, Biophys. J.

2012, 102, 2885.
[15] E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti,

J. E. Nielsen, D. Farrell, T. Carstensen, M. H. Olsson, J. K. Shen,
J. Warwicker, S. Williams, J. M. Word, Proteins 2011, 79, 3260.

[16] R. E. Georgescu, E. G. Alexov, M. R. Gunner, Biophys. J. 2002, 83, 1731.
[17] M. R. Gunner, N. A. Baker, Methods Enzymol. 2016, 578, 1.
[18] C. Bertonati, B. Honig, E. Alexov, Biophys. J. 2007, 92, 1891.
[19] J. H. Bredenberg, C. Russo, M. O. Fenley, Biophys. J. 2008, 94, 4634.
[20] P. Grochowski, J. Trylska, Biopolymers 2008, 89, 93.
[21] N. A. Baker, Methods Enzymol. 2004, 383, 94.
[22] L. Xiao, J. Diao, D. Greene, J. Wang, R. Luo, J. Chem. Theory Comput.

2017, 13, 3398.

Figure 3. Electrostatic field lines human parechovirus: red and blue correspond
to negative and positive polarity, respectively. The modeling was done using PDB
ID 5MJV, which contains 180 proteins, including 41,880 residues. The diameter of
thewhole virus is 298 Å.

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2502–2508 2507

http://compbio.clemson.edu/pka_webserver/
http://compbio.clemson.edu/pka_webserver/
http://compbio.clemson.edu/saambe_webserver/
http://compbio.clemson.edu/SAAFEC/
http://compbio.clemson.edu/SAAFEC/
http://compbio.clemson.edu/SAMPDI/
http://compbio.clemson.edu/delphi-force/
https://doi.org/10.1002/jcc.26006
http://WWW.C-CHEM.ORG


[23] C. Li, L. Li, M. Petukh, E. Alexov, Mol. Based Math. Biol. 2013, 1, 42.
[24] J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev,

J. Chem. Theory Comput. 2007, 3, 156.
[25] M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, C. L. Brooks, 3rd.,

J. Comput. Chem. 2004, 25, 265.
[26] L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, L. Wang, N. Smith,

M. Petukh, E. Alexov, BMC Biophys. 2012, 5, 9.
[27] W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, B. Honig,

J. Comput. Chem. 2002, 23, 128.
[28] W. M. Botello-Smith, X. Liu, Q. Cai, Z. Li, H. Zhao, R. Luo, Chem. Phys.

Lett. 2013, 555, 274.
[29] Y. C. Zhou, S. Zhao, M. Feig, G. W. Wei, J. Comput. Phys., 2006, 213, 1.
[30] E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, D. H. Brookes,

L. Wilson, J. Chen, K. Liles, M. Chun, P. Li, D. W. Gohara, T. Dolinsky,
R. Konecny, D. R. Koes, J. E. Nielsen, T. Head-Gordon, W. Geng, R. Krasny,
G. W.Wei, M. J. Holst, J. A. McCammon, N. A. Baker, Protein Sci. 2018, 27, 112.

[31] A. H. Boschitsch, M. O. Fenley, J. Comput. Chem. 2007, 28, 909.
[32] A. H. Boschitsch, M. O. Fenley, J. Comput. Chem. 2004, 25, 935.
[33] I. Getov, M. Petukh, E. Alexov, Int. J. Mol. Sci. 2016, 17, 512.
[34] M. Petukh, L. Dai, E. Alexov, Int. J. Mol. Sci. 2016, 17, 547.
[35] M. Petukh, M. Li, E. Alexov, PLoS Comput. Biol. 2015, 11, e1004276.
[36] Y. Peng, L. Sun, Z. Jia, L. Li, E. Alexov, Bioinformatics 2018, 34, 779.
[37] L. Wang, L. Li, E. Alexov, Proteins 2015, 83, 2186.
[38] L. Wang, M. Zhang, E. Alexov, Bioinformatics 2016, 32, 614.
[39] L. Li, A. Chakravorty, E. Alexov, J. Comput. Chem. 2017, 38, 584.
[40] L. Li, Z. Jia, Y. Peng, A. Chakravorty, L. Sun, E. Alexov, Bioinformatics

2017, 33, 3661.

[41] S. Shakeel, B. M. Westerhuis, A. Ora, G. Koen, A. Q. Bakker, Y. Claassen,
K. Wagner, T. Beaumont, K. C. Wolthers, S. J. Butcher, J. Virol. 2015, 89, 9571.

[42] L. Li, C. Li, E. Alexov, J. Theor. Comput. Chem. 2014, 13, 1440002.
[43] L. Li, C. Li, Z. Zhang, E. Alexov, J. Chem. Theory Comput. 2013, 9, 2126.
[44] A. Chakravorty, Z. Jia, Y. Peng, N. Tajielyato, L. Wang, E. Alexov, Front.

Mol. Biosci. 2018, 5, 25.
[45] Z. Jia, L. Li, A. Chakravorty, E. Alexov, J. Comput. Chem. 2017, 38, 1974.
[46] A. Chakravorty, Z. Jia, L. Li, E. Alexov, Langmuir 2017, 33, 2283.
[47] S. Pahari, L. Sun, S. Basu, E. Alexov, Proteins 2018, 86, 1277.
[48] E. Alexov, M. Sternberg, J. Mol. Biol. 2013, 425, 3911.
[49] T. G. Kucukkal, M. Petukh, L. Li, E. Alexov, Curr. Opin. Struct. Biol. 2015,

32, 18.
[50] Y. Peng, E. Alexov, Proteins 2016, 84, 232.
[51] M. Petukh, T. G. Kucukkal, E. Alexov, Hum. Mutat. 2015, 36, 524.
[52] S. Stefl, H. Nishi, M. Petukh, A. R. Panchenko, E. Alexov, J. Mol. Biol.

2013, 425, 3919.
[53] M. D. Kumar, K. A. Bava, M. M. Gromiha, P. Prabakaran, K. Kitajima,

H. Uedaira, A. Sarai, Nucleic Acids Res. 2006, 34(Database issue, D204.
[54] L. Li, J. Alper, E. Alexov, Sci. Rep. 2016, 6, 23249.
[55] S. Sarkar, S. Witham, J. Zhang, M. Zhenirovskyy, W. Rocchia, E. Alexov,

Commun. Comput. Phys. 2013, 13, 269.

Received: 3 April 2019
Revised: 7 May 2019
Accepted: 9 June 2019
Published online on 25 June 2019

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2502–2508 WWW.CHEMISTRYVIEWS.COM2508

http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM

	 DelPhi Suite: New Developments and Review of Functionalities
	Introduction
	Methods
	Overall description of DelPhi C++ code architecture
	Parallelization schemes and memory distribution
	Definitions of testing parameters

	Results
	Outline placeholder
	Parallelization (speedup, efficiency, and memory usage benchmarking)
	Assessing DelPhi C++ accuracy

	Newly added features and resources associated with DelPhi
	Gaussian-based smooth dielectric function and its applications
	Mobile ions treatment via born solvation term in PBE
	Zeta-potential
	Surface-free approach of computing pKa's of proteins, RNAs, and DNAs
	DelPhiForce
	Computing folding free energy changes due to mutations (SAAFEC method)
	Modeling protein-protein binding free energy changes (SAAMBE method)
	Modeling protein-RNA/DNA binding free energy changes (SAMPDI method)
	Multiscale sampling method (MSSM)
	Delphi webserver
	DelphiPKa
	SAAMBE webserver
	SAAFEC webserver
	SAMPDI webserver
	DelPhiForce webserver


	Conclusions
	Acknowledgments


