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Abstract
The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins
(folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (Sm, Em)
for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having
knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially
presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi
version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more
realistic. The twomethods (single- andmulti-dielectric) agree decently in their resultant Em values, and hence, provisions for both
methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a
well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from
theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for
potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CPdock, based
on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method
to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark.
The results unambiguously indicate that CPdock can indeed be effective in the initial screening phase of a docking scoring pipeline
before going into more sophisticated and computationally expensive scoring functions. CPdock has been made available at https://
github.com/nemo8130/CPdock.
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Introduction

The complementarity plot (CP) is an existing graphical struc-
ture validation tool in the field of protein science originally
proposed for globular proteins [1–3] and later extended for
experimentally solved protein co-complexes [4]. So far, it
has been constructed and applied to analyze complementarity
in a residue-wise manner in proteins. CP has a wide array of
applications ranging from serving as a component in protein

crystallography, homology modeling, protein design, and dy-
namics [1, 2, 5]. It computes the shape and electrostatic com-
plementarities for amino acid side-chains deeply or partially
buried within the protein interior or interface and plots these
ordered pair values in a two-dimensional plot (Em: ordinate,
Sm: abscissa) according to the burial of the residues [1]. In
effect, the term CP stands out to be a misnomer, while in
reality, there exist three plots (CP1, CP2, CP3) corresponding
to three different burial bins (see Methods) [1]. The design of
CP is analogous to the famous Ramachandran plot (RP) [6]
though it is distinctly different in its physico-chemical nuances
and accordingly in its particular uses in the validation pipeline.
For example, structures with incorrectly assigned side-chain
rotamers (frequently found in low-resolution atomic models)
may indeed give rise to a sub-optimal distribution of points in
their CPs, in spite of satisfying well the Ramachandran vali-
dation filters (or scores based on the RP— as in Procheck [7],
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Molprobity [8]) by having an optimal set ofΦ,Ψs [2]. For this
very reason, the combined application of the two complemen-
tarity measures (Sm, Em) has also found wide use and superi-
ority in performance to older methods in threading exercises
[1] wherein the problem was to identify the correct native
structure situated amid a set of decoys, with their main-
chains being kept identical to that of the native (offering an
identical set of Φ, Ψs) while allowing variations only in their
side-chain coordinates. Also, in the related problem of protein
fold recognition, the methodology could prove its efficacy to
identify the correct fold for a pair of sequences having low
sequence similarity although belonging to the same fold [1].

The accurate determination of the local internal dielectric
constant within proteins (as a function of the degree of solvent
exposure of amino acid residues) has been a well posed prob-
lem in the field for decades. For electrostatic continuum
models, there has been much debate among different values
proposed for the parameter [9]. The subject was made further
complicated by paradoxical observations like the presence of
ionic groups in the hydrophobic protein interior without hav-
ing to adapt to any specialized structures to get stabilized,
demanding a considerably higher effect experienced locally
at these sites than can be accounted for by the low dielectric
constant traditionally assigned to represent the hydrophobic
protein interior in continuum models [10]. Primarily contrib-
uted by this ‘dielectric problem’, electrostatic complementar-
ity of individual amino acid residues (Em) within a folded
protein chain remained undetermined, until the problem was
finally adequately addressed by the same study [1] that put
forward the complementarity plot (CP). Briefly, the study
showed that electrostatic complementarity (being a correlation
function between two troughs of potential values) is indepen-
dent of any single dielectric constant assigned to the protein
interior, treated as the internal dielectric of the continuum [1].
Even then, the methodology had room to implement more
sophistication by means of actually quantifying the local in-
ternal dielectric in situ prior to calculating the electrostatic
potential. This central concern of protein electrostatics has
precisely been addressed recently in an advanced version of
Delphi [11], the leading Poisson-Boltzmann solver in the
field. More specifically, by means of their Gaussian-based
approach in the multi-dielectric treatment of the protein inte-
rior [12], Delphi can now deliver the dielectric constant dis-
tribution throughout a protein. As a result, it presented a real-
istic opportunity to incorporate this functionality in CP and
recompute Em as a function of variable local internal dielec-
tric, compare the results with the earlier method, and keep
both options in the user interface of the software and this is
the central theme of the current report. The study shows strong
agreement in general in the Em values for amino acid residues
within proteins, computed by both single- and multi-dielectric
methods. It is to be noted that large disagreement between the
Em values is rare and highly contextual, and, in such cases the

more advanced multi-dielectric method is surely recommend-
ed. Subsequently, both softwares for CP (Interior: https://
github.com/nemo8130/SARAMA-updated [3], Interface:
https://github.com/nemo8130/SARAMAint-updated [4])
have been added with the provisions to implement both
single- and multi-dielectric methods as separate standalone
packages.

In addition, here we also present a variant of the comple-
mentarity plot (namely CPdock) to be effectively used at the
initial screening phase of a protein-protein docking scoring
pipeline. CPdock is based on single values of shape (Sc) and
electrostatic complementarity (EC) raised at the protein-
protein interface, as in the original formulations of the two
complementarity measures [13, 14] .

Methods

Databases

For comparing the single- and multi-dielectric methods in
terms of their effect in CP, the Sm, Em values for individual
buried/partially buried residues were calculated from a previ-
ously standardized database (DB2) of globular proteins:
https://github.com/nemo8130/DB2 which was used
successfully in several earlier studies [1, 2, 15].

For the construction of CPdock, the Sc, EC values raised at
protein-protein interfaces were calculated from a previously
standardized database (DB3: https://github.com/nemo8130/
DB3), used successfully in several other studies [4, 15, 16].

The complementarity plot

Though the construction and implementation of CP has pre-
viously been described in complete detail [1–4], it is perhaps
good to recapitulate some of its fundamental and essential
features to make the current report self-contained. CP requires
the shape (Sm) and electrostatic (Em) complementarity to be
computed for amino acid residues completely or partially bur-
ied within a folded polypeptide chain.

To start with, solvent accessible surface area (ASA) was
calculated for each protein atom by NACCESS [17] which
were then summed up for all atoms pertaining to the same
residue. As elaborated in a series of earlier studies [1, 2, 18,
19], the burial (bur) of solvent exposure for any residue (X)
embedded in a polypeptide chain was defined by the solvent
accessible surface area (ASA) of X located in the protein di-
vided by the ASA of the same amino acid in a Gly-X-Gly
peptide fragment in its fully extended conformation.
Residues were distributed in three different burial bins based
on their bur values mapping to three different CPs: CP1:
0.00 ≤ bur ≤ 0.05; CP2: 0.05 < bur ≤ 0.15; CP3: 0.15 < bur ≤
0.30. The completely exposed residues with bur > 0.3 [18]
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were not considered in any of the CPs for lacking any notable
packing constraints in their local neighborhood. For protein-
protein interfaces, the atoms getting buried upon complexa-
tion, characterized by a net non-zero change in their corre-
sponding ASA values in unbound and bound forms (i.e.,
|ΔASA| > 0) constituted the interface [4]. The corresponding
amino acid residues were then distributed according to their
burial and used to construct the corresponding CPs.

The van der Waals surface was then calculated for the en-
tire polypeptide chain, sampled at 10 dots/Å2 [18] and the dot
surface points sourced from each amino acid residue in the
chain, identified. For shape complementarity (Sm), only side-
chain dot surface points corresponding to the buried residues
(targets) were considered and their nearest neighboring sur-
face points identified from the rest of the polypeptide chain
(within a distance of 3.5Ǻ). Surface points are essentially area
elements and thus represented by their positions (x, y, z) and
the direction cosines (dl, dm, dn) of their normals. Following
Lawrence and Colman [13], the following expression was
then calculated:

S a; bð Þ ¼ na:nb:exp −w:dab2
� � ð1Þ

where na and nb are two unit normal vectors, corresponding to
the dot surface point a (located on the side-chain surface of the
target residue) and b (the dot point nearest to a, within 3.5 Å)
respectively, with dab the distance between them and w, a
scaling constant set to 0.5. Sm was defined as the median of
the distribution {S(a,b)} calculated over all the dot surface
points of the side-chain target residue.

Subsequent to identifying the nearest neighbors, the side-
chain dot surface points of the specified residue (target) was
partitioned into two sets by virtue of their neighbors coming
from either side-chain or main-chain atoms, and Sm was calcu-
lated separately for each set. Thus, every target residue (side-
chain) has three measures of Sm based on the choice of its
nearest neighbors (surface points), whether obtained from
side-chain (Sscm ) or main-chain atoms (Smcm ) alone, or from all

atoms (Sallm ). Since, glycines lack any non-hydrogen side-chain
atoms, they were excluded as targets from all calculations.

For electrostatic complementarity (Em), the electrostatic
potential of the molecular surface was estimated using the
finite difference Poisson-Boltzmann method as in DelPhi
[11] with the implementation of its advanced multi-dielectric
features [12]. The potential on the side-chain surface points of
a buried residue was then computed twice; firstly, due to all
(charged) atoms of the target residue, and secondly, due to all
(charged) atoms from the rest of the polypeptide chain (ex-
cluding the target). Thus, each dot surface point was now
tagged with two values of electrostatic potential. Following
McCoy et al. [14], the negative of the Pearson’s correlation
between these two troughs of potential values over the dot
surface points of the target residue was defined as Em.

Em ¼ −
∑N

i¼1 Φ ið Þ−Φ
� �

Φ
0
ið Þ−Φ0

� �

∑N
i¼1 Φ ið Þ−Φ

� �2
∑N

i¼1 Φ
0
ið Þ−Φ0

� �2
� �1=2

ð2Þ

where, for a given residue consisting of a total of N dot surface
points, Φ(i) is the potential on its ith point realized due to its

own atoms and Φ’(i), due to the rest of the protein atoms, Φ

and Φ0 are the mean potentials ofΦ(i), i = 1…N and Φ’(i), i =
1…N respectively.

Similar to Sm, subsequent to calculating the electrostatic
potentials, the values corresponding to N dot surface points
were divided into two distinct sets based on whether the dot
point was obtained frommain-chain or side-chain atoms of the
target residue, and accordingly Em was calculated separately
for each set. Thus for a given residue, Emwas estimated for the

entire residue (Eall
m , as described above), the side-chain dot

surface points (Esc
m ), and the main-chain dot surface points

(Emc
m ).
As discussed in the original reports [1, 2], the plot of Sscm on

the X-axis and Esc
m on the Y-axis (spanning −1 to 1 in both

axes) constitutes the ‘complementarity plot’ (CP), which is
actually divided into three plots based on the burial ranges:
0.00 ≤ Bur ≤ 0.05 (CP1), 0.05 < Bur ≤ 0.15 (CP2), and 0.15 <
Bur ≤ 0.30 (CP3). First, all the buried residues from the data-
base, DB2, were plotted in the CPs, which had been divided
into square-grids (of width 0.05 × 0.05), and the center of
every square grid was assigned an initial probability (Pgrid)
equal to the number of points in the grid divided by the total
number of points in the plot. The probability of a residue to
occupy a specific position in the plot was then estimated by
bilinear interpolation from the probability values of its four
nearest neighboring voxels. Each CP was contoured based on
the initial probability values (Pgrid ≥ 0.005 for the first contour
level and Pgrid ≥ 0.002 for the second) thus dividing the plot
into three distinct regions. Similar to the ‘allowed’, ‘partially
allowed’, and ‘disallowed’ regions of the Ramachandran plot
[6], the region within the first contour was termed ‘probable’,
between the first and second contour ‘less probable’, and out-
side the second contour ‘improbable’. An identical methodol-
ogy was followed to probe protein-protein interfaces in a
residue-wise manner [4].

It is expected from the distribution of points corre-
sponding to residues coming from a well folded globular
protein or a well-packed interface that most points should
map to ‘probable’ and ‘less probable’ regions of the
plot(s), while only a low fraction should fall into the ‘im-
probable’ region, corresponding to local packing defects
and/or sub-optimal electrostatic complementarity. This has
been well demonstrated on thousands of high-resolution
native X-ray structures of both folded globular proteins as
well as packed interfaces [1–4].
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For CPdock, the equivalent single-valued complementarity
measures for protein-protein interfaces, namely Sc and EC,
were directly adapted from their original formulations [13,
14]. Sc was calculated precisely according to a previous report
[16] while for EC, the only alteration in the previous protocol
[16] was the permanent adaptation of the multi-dielectric con-
tinuum model [12].

Software implementation

The multi-dielectric versions of CP (Interior: https://github.
com/nemo8130/SARAMA-updated/tree/master/SARAMA-
multidielectric-delphi, Interface: https://github.com/
nemo8130/SARAMAint-updated/tree/master/SARAMAint-
multidielectric-delphi) have appropriately been added with the
functionality to implement the delphi multi-dielectric model
[12]. For user-convenience as well as for future development,
the single- and multi-dielectric methods have been kept as
separate standalone packages; and, as a consequence, there
is no alteration required at the user interface. The user may
simply download the desired version (single- or multi-dielec-
tric) and run an identical set of commands (as detailed in the
software-documentation) to execute either of them. The CP
packages (SARAMA, SARAMAint) can also be found listed
in the delphi tools page (http://compbio.clemson.edu/delphi_
tools) redirecting to their source site (http://www.saha.ac.in/
biop/www/sarama.html) having the same currently updated
versions and also hyperlinks to the aforementioned github
pages. For all future downloads and updates, we recommend
the user to refer to the github pages.

Results and discussion

Statistical comparison of the single-
and multi-dielectric methods

The overall distribution of points in the CPs does not really
change by adapting to the multi-dielectric Gaussian model
[12]. This was evident from the visual comparison of both
distributions side-by-side across all three burial bins (Fig. 1,
Suppl. Fig. S1, Fig. S2). The agreement in the two methods
was also quantified by the overlap in grid-probabilities (Pgrid)
[1] between the corresponding pair of plots. Pgrid values were
found to be 0.94, 0.93, and 0.92 calculated over 22,461,
10,997, and 13,767 points for CP1, CP2, and CP3 for the
interior (calculated on DB2) while almost identical overlap-
values were also obtained for the interface CPs: 0.94, 0.94,
and 0.93 for 27,479, 18,376, and 17,868 points (calculated on
DB3). In accordance, the corresponding pair of Em values
(calculated by the two methods) also had descent agreement
between themselves as revealed from their root mean square
deviations (rmsd) and pair-wise correlation (Pearson’s). The

numbers were found to be rmsd: 0.12, Pearson’s: 0.90 (for
27,479 residues in CP1), rmsd: 0.13, Pearson’s: 0.88 (for
18,376 residues in CP2) and (rmsd: 0.15, Pearson’s: 0.86)
for 17,868 residues in CP3, calculated from the larger (DB3)
of the two databases. Note, that the corresponding agreement
between the equivalent single-valued term (EC) raised at
protein-protein interfaces has already been reported (rmsd:
0.15, Pearson’s correlation: 0.94) in a previous study [16].

The contours to delineate the ‘probable’, ‘less probable’,
and ‘improbable’ regions [1] of the plots based on the new
(multi-dielectric) distributions were also redrawn for all three
CPs (Fig. 2, Suppl. Fig. S3, Fig. S4) following an identical
method described in the original formulation of CP [1] and
compared with the earlier contours [1, 2]. The contours were
largely similar with only marginal increase in length along the
Y-axis (Em) which is well within statistical limits of error.
These ever-so-tiny differences could potentially also occur
even if an identical methodology is implemented on two
different/non-overlapping databases to delineate the contours.
Note that the complementarity plot is probabilistic
(knowledge-based) in nature. Based on this strong coherence
between the two methods consistent across all three burial
bins (CP1, CP2, CP3), the original contours were retained in
both (single-dielectric, multi-dielectric) versions of the
softwares.

CPdock

In addition to the adaptation of the multi-dielectric method to
compute electrostatic complementarity, here we also present
an equivalent though new plot (namely, CPdock) designed with
the view to score docked inter-protein or peptide-protein com-
plexes. CPdock plots single ordered-pair complementarity
values computed at the protein-protein interface (Sc, EC) in
the background of equivalent non-overlapping contoured re-
gions (i.e., ‘probable’, ‘less probable’, ‘improbable’) delineat-
ed from the distribution of the same set of complementarity
measures (i.e., Sc, EC) from a database of high resolution
protein-protein complexes. In effect, this is a back-track to
the origin of the subject since the original idea to evaluate
shape and electrostatic complementarities (Sc, EC) in proteins
emerged and was implemented for interfaces only, based on
single complementarity scores [13, 14] assigned to each inter-
face. Here we take the opportunity to demonstrate the num-
bers pictorially.

To that end, 1880 high resolution protein co-complex crys-
tal structures were assembled from a previously used database
(DB3, see Methods); the (Sc, EC) values calculated at their
interface (precisely according to an earlier report [16]) and
plotted in accordance with the previous constructions of the
plots [1]. The multi-dielectric Gaussian model [12] was im-
plemented to compute EC. The whole two-dimensional area
was divided into square grids (0.05 × 0.05 wide) and the
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probability of finding any point (representative of a protein-
protein interface) in a particular grid (Pgrid) was estimated as
demonstrated earlier [1]. Similar to its original constructions
[1], the plots were then contoured based on their grid-
probability values, Pgrid≥0.005 for the first contour level and
≥0.002 for the second. The cumulative probabilities of locat-
ing a point within the first and the second contoured level were
found to be in strong agreement with previous versions of the
complementarity plots constructed to score proteins in a
residue-wise manner.

One noticeable point of difference between the residue-
wise-multi-valued and single-valued versions of the plots is
their range in the shape complementarity (Fig. 3) defined
along the horizontal axis. It is to be noted that Sc maps to an
elevated range of values in comparison to the residue-wise
equivalent measure Sm as evident from the two plots. This is

because Sc is computed traditionally on the molecular
Connolly surfaces [13] whereas Sm is computed on van der
Wal’s surfaces [18]. It is well-known [18] that the shape com-
plementarity measure renders a higher value when computed
on molecular Connolly surfaces than equivalent van der
Waal’s surfaces because of the re-entrant points of the van
der Waal’s surfaces making their contours (protrusions and
crevices) sharper than the corresponding Connolly surfaces
[18].

The fact that there is a 20% probability associated with
attaining a negative EC at native inter-protein interfaces [16]
is also reflected in the isolated islands at the negative half of
EC in the plot. The constraints with respect to Sc is again
much stronger than EC featured by the horizontal (Sc) and
vertical (EC) widths of the corresponding contoured levels
(say, the probable regions) in the plot. This difference in

Fig. 1 Distribution of points in
CP1 (corresponding to the first
burial bin: 0 ≤ bur ≤ 0.05) where
Em calculated by (A) single- and
(B) multi-dielectric methodsSm,
Em calculated for amino acid
residues from the database DB2.
The distributions show the
agreement between the two
methods

Fig. 2 Contours to delineate the
different regions (probable, less
probable, improbable) in the
complementarity plot: drawn for
CP1 where Em calculated by (a)
single- and (b) multi-dielectric
methodsThe ‘probable’, ‘less
probable’, and ‘improbable’
regions of the plots are colored in
purple, mauve, and sky blue
respectively
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relative width (constraints) given rise by Sc and EC is consis-
tent with the short and long range nature of the forces from
which they have been originated.

Utility of CPdock exemplified in a docking benchmark

The apt of the plot (CPdock) in discriminating between good
and bad realistic protein-protein docked complexes was tested
on a recent docking benchmark [20] built using SwarmDock
[21] to generate the models. The benchmark (named after the
first author ‘Moal’) originally contained 56,015 models for
118 targets and was previously used to test, validate, and com-
pare the performance of another recent docking scoring func-
tion, ProQDock [16] trained by support vector regression ma-
chines using shape and electrostatic complementarities as two
of its 13 features. In the same study, it was found that the
electrostatic complementarity can also be negative for top
ranked realistic docked protein complexes at a statistically
non-negligible fraction (~21%), which is true even for native
experimentally solved protein complexes (~20%). In such
cases, highly raised values of shape complementarity was
found to compensate the deleterious electrostatic effect at the
interfaces. When Sc, EC were calculated on the native Moal
targets, the same fraction (i.e., negative EC) was found to be
~17%, similar to the larger datasets.

Our objective for the current calculation was to test the
efficacy of CPdock in its discriminatory ability between good
and bad docking models, based only on the two complemen-
tarity measures. If found to be efficient, one can then poten-
tially use this tool as a mean to provide a meaningful delinea-
tion between good and bad docked models, to be used at the

initial screening phase of a docking scoring pipeline, before
actually going into expensive computation with more sophis-
ticated trained machines like ProQDock [16]. To that end, one
had to consider one or more subsets of (Moal) targets (and
their corresponding models) for which their native Sc, EC
values were found to be optimal falling in the ‘probable’/‘less
probable’ regions of the plot. In other words, it probably won’t
make sense to try out CPdock on those targets where the native
complex itself maps to the ‘improbable’ region of the plot, due
to sub-optimal values being raised by one of its two compo-
nents (EC in particular, hitting a negative value in ~1/5th of
the cases).

Two separate calculations were conducted on two subsets
based on two sets of cutoffs. The cutoffs were set according to
the normalized frequency (or probability) distributions of the
parameters as revealed from the database, DB3. The probabil-
ity distribution of Sc was found to best fit to a sharp Gaussian
curve (R2 = 0.98) with tight bounds on either end of the peak
value, while the same for EC was negatively skewed fitting
best to a Lorentzian distribution (R2 = 0.97) accompanied by a
long tail mapping to the negative EC values (Fig. 4). The
nature of the curves were identical to the characteristic pat-
terns depicted earlier for the conditional probability estimates
P(Sm|{Res, Bur}) and P(Em|{Res, Bur}) calculated on their
corresponding residue-wise parameters Sm and Em for a given
burial bin (Bur) and residue identity (Res) [1]. The contrasting
features in terms of the stringent and relaxed curve-widths of
the two distributions were also consistent with the nature of
short- and long-range forces determining the Sc and EC
respectively.

To determine the cutoffs based on these two distributions,
first, their medians were calculated (μ(Sc): 0.73, μ(EC): 0.41)
along with the corresponding absolute median deviations
(σ(Sc): 0.06, σ(EC): 0.21). It is noted that for EC the median
was certainly a better choice for central tendency because of
the negatively skewed nature of the distribution, while for Sc
either the mean or median could have been the choice due to
the symmetric nature of the distribution (mean: 0.71, median:
0.73). For consistency purposes, medians were considered for
both.

For the first of the two calculations, a straight cutoff (or
lower threshold) equaling to the aforementioned median
values (Sc: 0.73, EC: 0.41) were set for both measures, while
for the second, the corresponding lower thresholds were set to
(μ-3σ) and (μ-σ) for Sc and EC, consistent with the stringent
and relaxed curve-widths of their respective distributions.
Note that the vertical EC-width encompassing the ‘probable’
region is about thrice the horizontal Sc-width in CPdock (which
is also true for the residue-wise CP1 corresponding to the first
burial bin).

In effect, only the ‘elite class’ of targets (in terms of Sc, EC)
were considered for the first calculation, which could secure
highly elevated values of Sc ≥ 0.73, EC ≥ 0.41 in their

Fig. 3 Contours to delineate the different regions (probable, less proba-
ble, improbable) in CPdockSc, EC calculated for interfaces from the
database DB3. The ‘probable’, ‘less probable’, and ‘improbable’
regions of the plots are colored in purple, mauve, and sky blue
respectively
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respective native structures. Only 28 out of 118 targets could
fall into this class. While, for the second calculation, those
targets were considered for which the native structures could
hit values in Sc, EC between closed intervals of the aforemen-
tioned lower thresholds (Sc: μ-3σ; EC: μ-σ) and the corre-
sponding medians (μ). Thirty-nine targets could fall into this
class satisfying the Sc, EC criteria of 0.55 ≤ Sc < 0.73 and
0.20 ≤ EC < 0.41 simultaneously. Hence, this class of targets
could be viewed as the ‘average class’ and there’s no overlap
between the two (‘elite’ and ‘average’) classes totaling 67
targets (and the corresponding 31,508 models) covered be-
tween them.

In effect, for both the ‘elite’ and the ‘average’ class of
targets, the native Sc, EC values were optimal, falling into
the ‘probable’ or ‘less probable’ regions of CPdock, such that
they could serve as valid reference native benchmarks (in
terms of Sc, EC) against which the quality of the docked
models could be judged.Wewere to test whether in such cases
CPdock was indeed able to suggest reasonably strong probabil-
ity estimates that could delineate between incorrect and cor-
rect docked models as assigned to each model by the docking
benchmark [20] based on the CAPRI classification scheme
[22] in which correct models refer to the ‘acceptable or higher’
category.

For all targets covered by both the classes (as detailed
above) and their corresponding models, Sc, EC were cal-
culated, plotted, and overlaid on CPdock with different
colors assigned to the native (white), correct (black), and
incorrect (red) models. For each target, the fraction of
models falling into the ‘probable’, ‘less probable’, and
‘improbable’ regions of the plot were calculated separate-
ly for the correct and incorrect models. Descriptive

statistics on these fractional counts were performed after-
ward on the targets falling into the ‘elite’ and ‘average’
class (as defined above) individually.

For the incorrect models belonging to the ‘elite’ class of
targets, the fractions (averaged over all targets in the class)
falling into the ‘probable’, ‘less probable’, and ‘improbable’
regions of CPdock were 23.0% (±7.4), 37.5% (±3.6), and
39.6% (±7.6) respectively (Table 1). In distinct contrast, the
same fractions for the correct models in this class were 81.8%
(±13.1), 14.9% (±10.8), and 3.3% (±3.7) respectively
(Table 2).

A thorough visual examination of the individual plots
revealed a few kinds of distribution patterns of the correct
models among themselves as well as with respect to their
corresponding native(s). In the most prevalent pattern ob-
served, the correct models were found to be clustered
together around the closely spaced native (Fig. 5) mostly
falling into the probable regions of the plots, while anoth-
er frequent pattern portrayed the distant residence of the
native with respect to the cluster formed by the correct
models (Fig. 6). Yet another third pattern was observed
where the correct models were themselves scattered,
though again mostly falling into the probable regions of
the plots (Fig. 7). On the other hand, the incorrect models
were mostly found gathering around the left bottom half
of the less probable/improbable regions of the plots map-
ping to lower/sub-optimal Sc, EC values. Overall, the
ability of the plot to delineate between the correct and
incorrect models were clear and unambiguous in this
‘elite’ class of targets, the ones with optimal and elevated
native Sc, EC values providing strong reference points for
quality assessment of the docked models.

Fig. 4 Normalized frequency (or
probability) distributions of (a) Sc
and (b) EC and their best fit
curves (c) and (d) respectively
The goodness of fit is
demonstrated by R2 values of
0.98 and 0.97 for Sc and EC
respectively
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For the ‘average class’ of targets, the mean fractions of
incorrect models falling into the ‘probable’, ‘less proba-
ble’, and ‘improbable’ regions of CPdock were 19.6%
(±7.2), 35.9% (±3.9), and 44.5% (±9.9) respectively
(Suppl. Table S1) while the same fractions for the correct
models in this class were 64.9% (±12.1), 32.8% (±11.4),
and 2.3% (±2.5) respectively (Suppl. Table S2).

So to speak, the mean fractional counts (falling into the
three disjoint regions of the plots) in both classes (‘elite’
and ‘average’) were fairly similar for incorrect models
while for the correct models the ‘elite class’ could hit to
a higher mean fractional count in the ‘probable’ regions

(81.8%) than to that of the average class (64.9%) with
standard deviations of the same order of magnitudes.
This has been accompanied by a corresponding lower
mean fractional count in the ‘less probable’ regions for
the elite class (14.9%) compared to the average class
(32.8%) again with roughly identical standard deviations
while similar values were obtained for both classes in the
‘improbable regions’ of the plot. This third category of
points could be treated as ‘false negatives’. The relative
alterations in the corresponding mean fractional counts in
the two classes could also be viewed as the transition of
~15% of points from the ‘probable’ to the ‘less probable’
region, brought about by switching from the ‘elite’ to the

Table 1 CPdock statistics on incorrect models in the ‘elite class’ of
targets selected from the docking benchmark ‘Moal’

Target Fprobable Fless_probable Fimprobable TotNM

1AVX 0.165 0.397 0.438 424

1AY7 0.134 0.459 0.408 435

1AZS 0.186 0.355 0.459 484

1D6R 0.232 0.424 0.344 423

1E6E 0.248 0.368 0.385 424

1E96 0.229 0.361 0.410 501

1EAW 0.470 0.394 0.136 427

1FCC 0.257 0.371 0.371 427

1FQJ 0.208 0.389 0.403 463

1GPW 0.320 0.315 0.364 408

1GXD 0.143 0.362 0.494 463

1I2M 0.243 0.337 0.420 400

1J2J 0.188 0.363 0.449 409

1JTG 0.227 0.381 0.391 500

1 K74 0.138 0.430 0.432 376

1KXP 0.158 0.371 0.471 497

1LFD 0.308 0.346 0.346 468

1ML0 0.306 0.338 0.356 488

1OC0 0.123 0.380 0.498 423

1SYX 0.286 0.423 0.291 414

1WDW 0.158 0.303 0.539 459

1XQS 0.262 0.379 0.359 448

2I25 0.292 0.333 0.375 498

2I9B 0.268 0.409 0.323 494

2MTA 0.245 0.378 0.378 431

2OZA 0.181 0.409 0.409 446

2PCC 0.214 0.331 0.455 501

7CEI 0.241 0.382 0.377 413

Average 0.230
(±0.074)a

0.375
(±0.036)

0.396
(±0.076)

a Standard devision

Fprobable, Fless_probable, Fimprobable stands for the fraction of points falling
into the ‘probable’, ‘less probable’, and ‘improbable’ regions of the plots.
TotNM stands for the total number of models in the said category (incor-
rect/correct) as mentioned in the table title

Table 2 CPdock statistics on correct models in the ‘elite class’ of targets
selected from the docking benchmark ‘Moal’

Target Fprobable Fless_probable Fimprobable TotNM

1AVX 0.579 0.368 0.053 1

1AY7 0.923 0.000 0.077 12

1AZS 0.900 0.100 0.000 8

1D6R 0.867 0.133 0.000 5

1E6E 0.818 0.182 0.000 25

1E96 0.865 0.108 0.027 26

1EAW 0.771 0.200 0.029 4

1FCC 0.708 0.250 0.042 1

1FQJ 0.870 0.130 0.000 7

1GPW 0.860 0.120 0.020 29

1GXD 0.895 0.105 0.000 9

1I2M 0.535 0.395 0.070 26

1J2J 0.857 0.071 0.071 60

1JTG 0.955 0.000 0.045 28

1 K74 0.510 0.353 0.137 52

1KXP 0.897 0.103 0.000 31

1LFD 0.884 0.093 0.023 3

1ML0 0.882 0.088 0.029 23

1OC0 1.000 0.000 0.000 1

1SYX 1.000 0.000 0.000 8

1WDW 0.818 0.182 0.000 12

1XQS 0.615 0.288 0.096 8

2I25 0.806 0.161 0.032 13

2I9B 0.947 0.053 0.000 2

2MTA 0.727 0.182 0.091 2

2OZA 0.706 0.235 0.059 1

2PCC 0.865 0.115 0.019 10

7CEI 0.853 0.147 0.000 16

Average 0.818
(±0.131)

0.149
(±0.108)

0.033
(±0.037)

Fprobable, Fless_probable, Fimprobable stands for the fraction of points falling
into the ‘probable’, ‘less probable’, and ‘improbable’ regions of the plots.
TotNM stands for the total number of models in the said category (incor-
rect/correct) as mentioned in the table title
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‘average’ class. Note that the native Sc, EC values for the
targets in the ‘average class’ is lower in magnitude to that
of the ‘elite class’.

Although, the raw numbers suggest that the discrimi-
natory ability of CPdock in the ‘elite class’ is somewhat
better than the ‘average class’, if viewed against their
corresponding ranges of native reference values (Sc,
EC), their performances might as well be interpreted as
equivalent in both classes. Also, the dependence of the
discriminatory ability of the methodology on the native
(Sc, EC) reference values was evident. This said, CPdock
indeed appears more than useful to be incorporated in the
initial screening phase of a docking scoring pipeline, es-
pecially effective for those targets which procure strong
native reference values in their Sc, EC.

Conclusions

This brief software report essentially presents an
upgraded version of the complementarity plot (CP), an
established structure validation tool for proteins, based
on the incorporation of the multi-dielectric functionality

(as in the advanced Delphi version: 6.2 or higher) to
make it physico-chemically more realistic. It also high-
lights the agreement between the two methods (single-
and multi-dielectric) in terms of both residue-wise (Em)
as well as single-valued (EC) terms of electrostatic com-
plementarity measures (computed both at protein inte-
riors and interfaces). Hence, it was felt wise to keep both
provisions in the software suite. In effect, the conclu-
sions also support the previous observations that the im-
pact of a variety of values chosen as the internal dielec-
tric (in continuum electrostatic models) is rather passive
on the electrostatic complementarity, a key determinant
of the global long-range harmony in proteins. Having
said that, we definitely recommend our users to switch
to the more advanced multi-dielectric version of CP be-
cause it has stronger theoretical foundations potentially
giving rise to more reliable Em / EC values. The differ-
ence between the Em / EC values computed by the two
methods might actually be meaningful in certain structur-
al contexts, and in such cases some local salient features
might be portrayed by the advanced method that might
otherwise be missed by the older method (e.g., in muta-
tional studies, protein/peptide design). A full-scale

Fig. 5 Distribution of points
corresponding to the incorrect
(red), correct (black), and native
structures (white) for the elite
class of targets in CPdock: (a)
1E6E, (b) 1E96, (c) 1KXP, and
(d) 1ML0These distributions
represent cases where the correct
models cluster around their
corresponding closely spaced
natives
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analysis of this kind might serve as the subject matter of
future studies.

The current report also presents a new methodology and a
variant plot, namely CPdock, based on the same principles of
complementarity specifically designed to be used in protein-

protein docking. Calculations on a recent state-of-the-art
docking benchmark reveal the fact that CPdock can indeed be
effectively used in the initial screening phase of a docking
scoring pipeline, particularly effective for targets with strong
native reference values in the two complementarity measures.

Fig. 7 Distribution of points
corresponding to the incorrect
(red), correct (black), and native
structures (white) for the elite
class of targets in CPdock: (a)
1L2M, (b) 2I25 These represent
cases where the correct models
are scattered in contrast to
clustering as in Figs. 5 and 6

Fig. 6 Distribution of points
corresponding to the incorrect
(red), correct (black), and native
structures (white) for the elite
class of targets in CPdock: (a)
1D6R, (b) 1GPW, (c) 1JTG, and
(d) 7CEI These represent cases
where the native is far away from
the cluster of the correct models

 8 Page 10 of 11 J Mol Model  (2018) 24:8 



Acknowledgments We take the opportunity to thank Prof. Parbati Biswas
(Department of Chemistry, University of Delhi) for her kind moral sup-
port during the course of the current study. The work was supported by
the Department of Science and Technology – Science and Engineering
Research Board (DST-SERB research grant PDF/2015/001079/LS).

References

1. Basu S, Bhattacharyya D, Banerjee R (2012) Self-Complementarity
within Proteins: Bridging the Gap between Binding and Folding.
Biophys J 102:2605–2614

2. Basu S, Bhattacharyya D, Banerjee R (2014) Applications of com-
plementarity plot in error detection and structure validation of pro-
teins. Indian J Biochem Biophys 51:188–200

3. Basu S, Bhattacharyya D, Banerjee R (2013) SARAMA: A
Standalone Suite of Programs for the complementarity plot—a
graphical structure validation tool for proteins. J Bioinforma Intell
Control 2:321–323

4. Basu S, Bhattacharyya D,Wallner B (2014) SARAMAint: the com-
plementarity plot for protein–protein interface. J Bioinforma Intell
Control 3:309–314

5. Roy S, Basu S, Dasgupta D, Bhattacharyya D, Banerjee R (2015)
The unfolding MD simulations of cyclophilin: analyzed by surface
contact networks and their associated metrics. PLoS One 10:
e0142173

6. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963)
Stereochemistry of polypeptide chain configurations. J Mol Biol
7:95–99

7. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993)
PROCHECK: a program to check the stereochemical quality of
protein structures. J Appl Crystallogr 26:283–291

8. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM,
Kapral GJ et al (2010) MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr D Biol
Crystallogr 66:12–21

9. Kato M, Pisliakov AV, Warshel A (2006) The barrier for proton
transport in aquaporins as a challenge for electrostatic models: the
role of protein relaxation in mutational calculations. Proteins 64:
829–844

10. Isom DG, Castañeda CA, Cannon BR, Velu PD, BG-M E (2010)
Charges in the hydrophobic interior of proteins. Proc Natl Acad Sci
107:16096–16100

11. Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z et al (2012)
DelPhi: a comprehensive suite for DelPhi software and associated
resources. BMC Biophys 5:9

12. Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric Bconstant^
of proteins: smooth dielectric function for macromolecular model-
ing and its implementation in DelPhi. J Chem Theory Comput 9:
2126–2136

13. Lawrence MC, Colman PM (1993) Shape complementarity at
protein/protein interfaces. J Mol Biol 234:946–950

14. McCoy AJ, Chandana Epa V, Colman PM (1997) Electrostatic
complementarity at protein/protein interfaces. J Mol Biol 268:
570–584

15. Basu S, Mukharjee D (2017) Salt-bridge networks within globular
and disordered proteins: characterizing trends for designable inter-
actions. J Mol Model 23:206

16. Basu S, Wallner B (2016) Finding correct protein–protein docking
models using ProQDock. Bioinformatics 32:i262–i270

17. Hubbard S, Thornton J (1993) NACCESS. Department of
Biochemistry and Molecular Biology, University College
London. [accessed 2017 Mar 1]. Available from: http://www.
oalib.com/references/5299711

18. Banerjee R, Sen M, Bhattacharya D, Saha P (2003) The jigsaw
puzzle model: search for conformational specificity in protein inte-
riors. J Mol Biol 333:211–226

19. Basu S, Bhattacharyya D, Banerjee R (2011) Mapping the distribu-
tion of packing topologies within protein interiors shows predomi-
nant preference for specific packing motifs. BMC Bioinformatics
12:195

20. Moal IH, Torchala M, Bates PA, Fernández-Recio J (2013) The
scoring of poses in protein-protein docking: current capabilities
and future directions. BMC Bioinformatics 14:286

21. Torchala M, Moal IH, Chaleil RAG, Fernandez-Recio J, Bates PA
(2013) SwarmDock: a server for flexible protein–protein docking.
Bioinformatics 29:807–809

22. Lensink MF, Méndez R, Wodak SJ (2007) Docking and scoring
protein complexes: CAPRI 3rd Edition. Proteins 69:704–718

J Mol Model  (2018) 24:8 Page 11 of 11  8 

http://www.oalib.com/references/5299711
http://www.oalib.com/references/5299711

	CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics
	Abstract
	Introduction
	Methods
	Databases
	The complementarity plot
	Software implementation

	Results and discussion
	Statistical comparison of the single- and multi-dielectric methods
	CPdock
	Utility of CPdock exemplified in a docking benchmark

	Conclusions
	References


