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A B S T R A C T

Disrupted genes linked to mental disorders sometimes exhibit characteristics of Intrinsically Disordered Proteins 
(IDPs). However, few studies have comprehensively explored the functional associations between protein dis-
order properties and different psychiatric disorders. In this study, we collected disrupted proteins for seven 
mental diseases (MDD, SCZ, BP, ID, AD, ADHD, ASD) and a control dataset from normal brains. After calculating 
the disorder scores for each protein, we thoroughly compared the proportions and functions of IDPs between 
differentially expressed proteins in each disease and healthy controls.

Our findings revealed that disrupted proteins, particularly in ASD and ADHD, contain more IDPs than controls 
from normal brains. Distinct patterns in disorder properties were observed among different mental disorders. 
Functional enrichment analysis indicated that IDPs in mental disorders were associated with neurodevelopment, 
synaptic signaling, and gene expression regulatory pathways. In addition, we analyzed the proportion and 
function of liquid-phase-separated proteins (LLPS) in psychiatric disorders, finding that LLPS proteins are mainly 
enriched in pathways related to neurodevelopment and inter-synaptic signaling. Furthermore, to validate our 
findings, we conducted an analysis of differentially expressed genes in an ASD cohort, revealing that the encoded 
proteins also exhibit a higher proportion of IDPs. Notably, these IDPs were particularly enriched in pathways 
related to neurodevelopment, including head development, a process known to be disrupted in ASD.

Our study sheds light on the crucial role of IDPs in psychiatric disorders, enhancing our understanding of their 
molecular mechanisms.

1. Introduction

Over the past two decades, the prevalence of mental disorders has 
risen rapidly, along with an increasing burden on healthcare systems 
and society [1]. Due to the complexity of their pathogenesis and the 
presence of unknown etiological factors, effective therapies for mental 
disorders are rarely available. Although genetic variation assessments, 
such as Genome-Wide Association Studies (GWAS), have identified 
numerous genes associated with mental disorders, the underlying mo-
lecular mechanisms are still not fully understood [2–4].

In recent years, significant progress has been made in exploring the 
functional properties of intrinsically disordered proteins (IDPs) and 

unraveling their crucial role in mental disorders [4–6].
Intrinsically disordered regions (IDRs) are biologically active protein 

regions that exhibit high conformational variability but lack stable 
three-dimensional structures [7–9]. IDPs, which may contain IDRs of 
varying lengths or be completely disordered, play key roles in numerous 
biological processes, such as signaling pathways, transcription, trans-
lation, and the cell cycle [10–14]. The precise regulation of abundant 
IDPs in cells ensures the accuracy of signaling pathways. Mutations or 
changes in IDPs could lead to multiple diseases [15–17].

IDPs play a crucial role in brain development. For example, ZSWIM8, 
a ubiquitin ligase, is essential for the development of the embryonic 
nervous system [18]. Its function is attributed to the presence of 
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abundant IDRs. These IDRs in ZSWIM8 and Dab1 interact with each 
other, correcting misfolding through the "disorder targets misorder" 
mechanism [19]. ZSWIM8 also promotes the proper phosphorylation of 
Dab1, thereby maintaining its regulatory function in the Reelin signaling 
pathway, which is implicated in several neuropsychiatric disorders, 
including Autism Spectrum Disorders (ASD), Schizophrenia (SCZ), Bi-
polar Disorder (BP), Major Depressive Disorder (MDD), and Alzheimer’s 
disease [18,20].

Mutations in IDPs have been identified as major contributors to 
protein aggregation in the brain and are associated with plaque forma-
tion in patients with neurodegenerative disorders. Well-known IDPs, 
such as alpha-synuclein, amyloid-beta peptide, and Huntington’s pro-
tein, are implicated in the pathogenesis of diseases like Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s disease [21–27].

Several studies have already demonstrated the functional impor-
tance of disorder properties by investigating one or a few genes in 
mental diseases [4,28]. However, the comprehensive analysis of the 
functional roles of IDPs in psychiatric disorders has rarely been per-
formed [29]. With the advancement of experimental methods, along 
with the rising number of diagnosed psychiatric cases, there is an urgent 
need to conduct in-depth analyses of the disorder properties of IDPs and 
their involvement in the pathophysiology of major psychiatric disorders. 
Understanding these molecular mechanisms will provide insights into 
the development of more targeted therapeutic strategies.

For this purpose, we meticulously compiled proteins associated with 
seven psychiatric disorders—Anxiety Disorder (AD), Attention Deficit 
Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Bi-
polar Disorder (BP), Major Depressive Disorder (MDD), Intellectual 
Disability (ID), and Schizophrenia (SCZ)—using stringent criteria. The 
resulting database includes differentially expressed proteins from seven 
disease datasets and one control dataset (BRAIN). We then calculated 
the disorder properties of these proteins using the state-of-the-art dis-
order prediction platform, RIDAO [30].

We conducted a comprehensive comparison of the disorder proper-
ties between the disease datasets and the controls. Using protein inter-
action analysis, Gene Ontology (GO), and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG), we explored the functional roles of IDPs in 
psychiatric disorders. Additionally, we compared the proportions and 
functions of liquid-liquid phase-separated (LLPS) proteins between 
psychiatric disorders and control data. Finally, we validated our findings 
by analyzing differentially expressed gene data from an ASD cohort 
study.

We found a higher prevalence of intrinsically disordered regions 
(IDRs) in ASD and ADHD compared to normal human brain proteins (p- 
value < 0.05). There are distinct IDR patterns across different psychi-
atric disorder datasets. IDPs associated with psychiatric disorders were 
significantly enriched in pathways related to neuron projection devel-
opment, head development, cell morphogenesis, brain development, 
and synaptic transmission regulation. Additionally, our LLPS analysis 
revealed that ASD and ADHD datasets contained more LLPS proteins 
than controls, with these proteins also enriched in neurodevelopment 
and synaptic signaling pathways. A similar pattern was observed in an 
ASD cohort study, where proteins exhibited higher IDP proportions and 
greater involvement in head development and inter-synaptic signaling.

Our research aims to explore the neurobiological connections be-
tween IDPs and mental diseases, providing new insights into the path-
ogenesis and treatment of psychiatric disorders.

2. Materials and methods

2.1. Datasets

To create a dataset related to mental disorders, we searched the 
DisGeNET [31] and GeneCards [32] databases using the following 
keywords: ‘anxiety disorder’, ‘attention deficit/hyperactivity disorder’, 
‘autism spectrum disorder’, ‘bipolar disorder’, ‘intellectual disability’, 

‘major depressive disorder’, and ‘schizophrenia’. Genes meeting the 
following criteria are included: (i) gene-disease association score > 0.1 
in the DisGeNET database; (ii) gene score > 1 in the GeneCards 
database.

The above step selected 2388 differentially expressed genes associ-
ated with mental disorders. We focus on genes expressed in the brain, 
given the primary involvement of the brain in the occurrence of psy-
chiatric disorders. To ensure this, we applied the following criteria: (i) 
genes expressed in either the Cerebellum, Cerebral Cortex, Hippocam-
pus, or Lateral Ventricle tissue according to the Human Protein Atlas 
[33]; (ii) genes expressed in ≥ 75 % of sample slices in at least 3 of 6 
brain donors from the Allen Human Brain Atlas [34]; or (iii) genes with 
expression RPKM (reads per kilobase of transcript per million mapped 
reads) values > 1 in ≥ 75 % of samples from at least one developmental 
stage according to the Allen Human Brain Atlas [34]. Fig. 1 illustrates 
the gene selection pipeline for psychiatric diseases.

We mapped the selected genes to their corresponding proteins using 
UniProtKB [35], resulting in a mental disorder-related protein dataset 
containing 2189 non-redundant proteins, referred to as the MENTAL 
dataset.

For comparison, we also constructed a control dataset using Brain- 
Specific Proteome data from the Human Protein Atlas [33]. The 
BRAIN dataset contains genes expressed in normal brains, selected based 
on the following criteria: (i) Genes with minimal expression signals in 
the human brain; (ii) Genes with immunohistochemical evidence of 
brain expression; (iii) Genes that can be mapped to proteins by the 
UniProt database; (iv) Genes not found in the MENTAL dataset. In the 
Human Protein Atlas, proteins are categorized based on their relative 
expression levels into three groups: (i) Elevated in brain； (ii) Low tissue 
specificity but expressed in brain； and (iii) Elevated in other tissues but 
expressed in brain. To ensure a fair comparison, we randomly selected 
2188 non-redundant proteins from the Brain-Specific Proteome data, 
matching the distribution of expression categories in the MENTAL 
dataset. Finally, the MENTAL dataset comprised 2189 proteins, while 
the BRAIN dataset contained 2188 proteins.

2.2. Intrinsic disorder prediction

We used the state-of-the-art RIDAO platform [30] to predict the 
disorder properties of each protein in the datasets. RIDAO is a fast and 
efficient tool that integrates six well-established disorder prediction 
tools into a unified platform. Residues with scores above 0.5 are clas-
sified as disordered, while scores below 0.5 indicate ordered. In this 
study, protein regions with a continuous length of ≥ 30 disordered 
residues were classified as intrinsically disordered regions (IDRs), and 
proteins containing at least one IDR were classified as intrinsically 
disordered proteins (IDPs) [29]. Based on the presence or absence of 
IDRs, we categorized mental disease-related proteins into two groups: 
’Low Disorder’ and ’High Disorder’.

2.3. Binding sites prediction

The ANCHOR software was used to identify the binding regions [36, 
37]. ANCHOR uses pairwise energy estimation methods to predict 
disordered binding regions by identifying fragments within disordered 
regions that interact with globular protein partners to gain stabilizing 
energy. Disordered binding sites were predicted for each protein in the 
seven disease datasets and the BRAIN dataset.

2.4. Protein-protein interaction (PPI) network construction

We used the UniProt ID as input, set ‘Protein Query’ as the data 
source, and applied a confidence score threshold of ‘0.90′ to completed 
the protein-protein interaction (PPI) networks using the STRING plugin. 
The construction of network edges is based on known interactions in the 
database, including those from curated databases, experimentally 
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validated interactions, and predicted interactions such as gene neigh-
borhoods, gene fusions, and gene co-occurrence. Additional factors such 
as text mining, gene co-expression, and protein homology are also 
considered. The network nodes represent the input proteins, with non- 
interacting nodes excluded.

We applied the degree algorithm from the CytoHubba plugin to 
identify the top 50 pivotal proteins from each dataset. These proteins 
were then used to construct interaction networks through the STRING 
plugin. To capture a broader range of interactions, we lowered the 
confidence score threshold to 0.40.

2.5. Protein functional annotation

We applied Metascape [38] to perform GO and KEGG analysis on the 
genes in each dataset, using the following parameters: a minimum 
overlap of 3, a p-value cutoff of 0.05, and a minimum enrichment of 3. 
We identified the top 5 most significantly enriched pathways for each 
dataset in terms of Biological Process, Molecular Function, Cellular 
Component. For the KEGG analysis, we determined the top 10 pathways 
with the most significant gene enrichment in each dataset. R version 
4.2.3 was used to visualize these observations.

2.6. Prediction of LLPS-prone proteins

We predicted the LLPS scores of psychiatric disease-associated pro-
teins using three state-of-the-art machine learning and deep learning 

predictors: PSPHunter [39], PSPredictor [40], and PredLLPS_PSSM [41, 
42]. The final LLPS prediction score was obtained by averaging the 
scores from these three predictors. We applied a threshold of 0.5, based 
on the criteria of all three predictors, to classify proteins as either LLPS 
or non-LLPS. Proteins with scores equal to or above this threshold were 
considered as LLPS proteins.

2.7. A ASD cohort containing 1141 patients

We selected data from a cohort study that included 1141 patients 
with ASD [43,44]. From this study, we identified 391 genes with sta-
tistical significance (FDR < 0.1) (Supplementary Table 1). These genes 
were mapped to their corresponding proteins using UniProtKB [35], and 
we filtered the results to retain only proteins with a ’Reviewed’ status 
and a protein existence level of ’Protein level’. For duplicate mappings 
meeting these criteria, we retained the protein with the longest 
sequence. The disorder properties of the screened proteins were assessed 
using the RIDAO platform [30] and IDPs and ordered proteins were 
categorized based on the criteria described in Section 2.2. For the 
identified IDPs, we performed GO functional enrichment analysis using 
MetaScape [45] and listed the top 5 terms across biological processes, 
cellular components, and molecular functions.

2.8. Statistical analysis

The statistical analysis was conducted using R version 4.2.3. 

Fig. 1. The data collection processes. This figure shows how we collect the disease dataset.
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Normality tests and tests for variance homogeneity were performed on 
each dataset, revealing that none of the datasets followed a normal 
distribution and that variances were not equal across groups. Therefore, 
protein sequence lengths between groups were compared using the 
Kruskal-Wallis Test, proportional comparisons were assessed using the 
chi-squared test, and pairwise comparisons were adjusted using the 
Bonferroni correction. The correlation between the proportion of 
disordered residues in disrupted proteins and their LLPS scores was 
assessed using the Pearson correlation coefficient.

3. Results & discussion

3.1. Acquisition and characterization of differentially expressed genes in 
mental disorders

As described in the methods section, we created two datasets: the 
MENTAL dataset, consisting of disease-related proteins, and the BRAIN 
dataset, serving as the control. The disease dataset includes seven sub-
sets: the anxiety disorders (AD) dataset: 68 proteins; the attention deficit 
hyperactivity disorder (ADHD) dataset: 307 proteins; the autism spec-
trum disorders (ASD) dataset: 143 proteins; the bipolar disorder (BP) 
dataset: 602 proteins; the major depression (MDD) dataset: 512 proteins; 
the intellectual developmental disorders (ID) dataset: 812 proteins; the 
schizophrenia (SCZ) dataset: 939 proteins. The list of these proteins is in 
Supplementary Table 1.

We then conducted functional enrichment analysis to examine the 
roles of the differentially expressed genes in the MENTAL dataset. We 
observed that proteins associated with psychiatric disease were signifi-
cant enrichment in processes related to behavior (GO:0007610), head 
development (GO:0060322), neural projection development 
(GO:0031175), trans-synaptic signaling regulation (GO:0099177), and 
brain development (GO:0007420). These processes are closely related to 
nervous system formation and function, as well as intraneuronal 
communication and neurotransmitter release. Furthermore, proteins in 
MENTAL dataset are strongly related to transcription, signal trans-
duction, protein-protein interactions, and gene regulatory mechanisms. 
They play crucial roles in dendritic, axonal, postsynaptic and presyn-
aptic synapses. These findings are consistent with previous studies 
[46–48]. KEGG pathway enrichment analysis was also performed on this 
dataset, with the detailed results shown in Figs. 2B and 2C.

We also constructed a protein interaction network of protein in the 
MENTAL dataset to obtain the potential hub proteins and their in-
teractions. The key hub proteins identified included AKT1, TP53, and 
ACTB. Fig. 2D depicts the comprehensive data of the protein interaction 
network associated with mental disorders.

3.2. Comparison of protein intrinsic disorder properties between MENTAL 
diseases and controls

We used the RIDAO platform [30] to predict protein disorder 

Fig. 2. Differential Gene Function Enrichment and Protein Interaction Network Analysis in MENTAL and BRAIN datasets. (A) Top 5 Biological Process, 
Cellular Component, and Molecular Function terms of genes in the BRAIN dataset. (B) Top 5 Biological Process, Cellular Component, and Molecular Function terms of 
genes in the MENTAL dataset. (C) Top 10 KEGG pathways in the MENTAL dataset were ranked by gene enrichment significance. (D) Protein-protein interaction 
networks of the top 100 proteins in the protein interaction network of the MENTAL dataset calculated by the degree algorithm. The inner circle lists the top 10 
proteins in clockwise order.
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properties of proteins in the MENTAL and the BRAIN dataset. The 
resulting mean disorder profile (MDP) score were used to calculate the 
percentage of IDPs in each dataset. Table 1 presents the details of the top 
15 proteins with the highest percentage of protein disorder in the 
MENTAL dataset.

The proportion of IDPs in each dataset was as follows: ASD 
(75.40 %), ADHD (73.40 %), ID (66.70 %), BP (65.60 %), MENTAL 
(65.70 %), SCZ (65.30 %), BRAIN (66.20 %), MDD (64.20 %) and AD 
(56.50 %). As shown in Table 2, we observed that the percentage of IDPs 
in the ASD and ADHD dataset was higher than that in the BRAIN dataset 
(P-value < 0.05, Fig. 3B).

3.3. Binding sites prediction in MENTAL diseases and controls

We employed ANCHOR to predict disordered binding sites within the 
protein sequences of each dataset. Proteins with at least one disordered 
binding site were selected for analysis. We found that the ASD and 
ADHD datasets contained significantly more proteins with disordered 
binding sites compared to the BRAIN dataset (Bonferroni p − value <
0.05). The number of disordered binding sites in the ASD and ADHD was 
significantly higher than that in the MDD dataset (Bonferroni p − value 
< 0.05).

Proteins in the ASD and ADHD datasets exhibited a higher tendency 
to bind and interact with other proteins compared to those in the BRAIN 
and MDD datasets. This trend was closely associated with a higher 
prevalence of IDPs in the ASD and ADHD datasets. A summary of the 
disordered binding sites for each dataset can be found in Supplementary 
Table 2 and Fig. 3C.

3.4. Comparison of enrichment analysis between ’Low Disorder’ and the 
’High Disorder’ proteins

After comparing the proportions of IDPs between mental disorders 
and healthy controls, we further investigated the potential functional 
pathways associated with IDPs in psychiatric diseases. To simplify the 
analysis, we categorized the proteins into two groups: ’Low Disorder’ 

and ’High Disorder’, based on the length of their disordered regions.
We conducted GO and KEGG functional enrichment analyses on both 

the Low Disorder and High Disorder datasets. We identified and listed 
the top 5 items for Biological Process, Cellular Component, and Molec-
ular Function in GO, as well as the top 10 pathways in KEGG. This 
analysis aims to further validate the pivotal role of disordered proteins 
in psychiatric disorders and explore their key functions.

3.4.1. Gene ontology functional analysis
In our study, we observed significant differences in the molecular 

functions of these two classes of proteins. Low Disorder proteins are 
implicated in molecular transmembrane transport, protein-protein in-
teractions, and oxidoreductase activity. In contrast, High Disorder pro-
teins exhibit a strong preference for intermolecular interactions, 
particularly those involving proteins and DNA. Most of these in-
teractions are related to signaling, gene expression, and transcriptional 
regulation.

In terms of biological processes, High Disorder proteins are more 
likely to be involved in neuron projection development, head develop-
ment, cell morphogenesis, brain development, and the modulation of 
chemical synaptic transmission compared to Low Disorder proteins. 
Both categories of proteins play crucial roles in synaptic signaling. 
Additionally, these proteins are important components of the synapse in 
both Low Disorder and High Disorder groups, underscoring the critical 
role of synapses in mental disorders.

We performed functional enrichment of the ASD and ADHD datasets, 
which have significantly more IDPs compared to the BRAIN dataset. The 
results showed that the molecular functions of IDPs in ASD involved 
chromatin binding, DNA binding, DNA-binding transcription factors 
binding, etc., which were closely related to the regulation of gene 
expression, while the molecular functions of IDPs in ADHD were mainly 
related to the activities of various ion transmembrane transport proteins. 
In terms of biological processes, IDPs in ASD are associated with a va-
riety of biological processes including learning and memory, chemical 
synaptic regulation, behavior, head development, and cognition, while 
IDPs in ADHD are mainly involved in the regulation of membrane 

Table 1 
Top 15 proteins with the highest percentage of disordered residues in the MENTAL dataset.

Protein name Protein ID Disease Protein 
length (aa)

Amino acid residues 
predicted to be disordered, 
aa (%)

Longest disordered 
region (aa)

Function

Stathmin STMN1_HUMAN MDD/ MENTAL 149 149(100) 149 tubulin binding
Neuromodulin NEUM_HUMAN BP/ MDD/ MENTAL/ SCZ 238 238(100) 238 calmodulin binding
Complexin− 2 CPLX2_HUMAN ADHD/ BP/ MDD/ 

MENTAL/ SCZ
134 134(100) 134 calcium-dependent 

protein binding
Neurogranin NEUG_HUMAN BP/ MENTAL/ SCZ 78 78(100) 78 calmodulin binding
PRKC apoptosis WT1 
regulator protein

PAWR_HUMAN BP/ MENTAL/ SCZ 340 340(100) 340 actin binding

Protein phosphatase 1 
regulatory subunit 1B

PPR1B_HUMAN BP/ MDD/MENTAL/ 
SCZ

204 204(100) 204 protein kinase 
inhibitor activity

Complexin− 1 CPLX1_HUMAN BP/ ID/ MDD/ 
MENTAL/ SCZ

134 133(99.25) 123 SNARE binding

Transcription factor 
SOX− 2

SOX2_HUMAN ID/ MENTAL 317 306(96.53) 154 DNA binding

Protein PRRC2A PRC2A_HUMAN MENTAL/ SCZ 2157 2082(96.52) 1856 RNA binding
Neurosecretory protein 
VGF

VGF_HUMAN BP/ MDD/ MENTAL/ 
SCZ

615 592(96.26) 345 growth factor activity

B-cell CLL/lymphoma 9 
protein

BCL9_HUMAN BP/ MENTAL/ SCZ 1426 1372(96.21) 943 beta-catenin binding

Transcription factor 12 HTF4_HUMAN ID/ MENTAL 682 640(93.84) 575 bHLH transcription 
factor binding

Microtubule-associated 
protein 6

MAP6_HUMAN MENTAL/ SCZ 813 760(93.48) 500 calmodulin binding

Methyl-CpG-binding 
protein 2

MECP2_HUMAN AD/ ADHD/ ASD/ BP/ 
ID/ MDD/ MENTAL/ SCZ

486 452(93.00) 333 chromatin binding

Charged multivesicular 
body protein 2b

CHM2B_HUMAN MDD/ MENTAL 213 196(92.02) 153 cadherin binding

AD, Anxiety Disorder; ADHD, Attention Deficit Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BP, Bipolar Disorder; MDD, Major Depressive Disorder; ID, 
Intellectual Disability; SCZ, Schizophrenia
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Table 2 
Comparison of disorder properties in different mental diseases.

Protein length Intrinsic disorder estimates

Name N Mean SE Maximum Median Overall disordered Proteins with long regions of
amino acids (%) disorder (%)

BRAIN 2188 575.8 10.9 4870 441 32.08 % 66.20 %
AD 68 695.8 72.8 2768 479.5e 33.87 %e 56.50 %
ADHD 307 995.1 54.3 8797 710.0e 33.89 %e 73.40 %e

ASD 143 1033 68.3 4967 708.0e 33.25 %e 75.40 %e

BP 602 753.1 29.2 8797 560.5e 29.77 %e 65.60 %
MDD 512 687.8 28.6 6306 485.5e 27.85 %e 64.20 %
ID 812 921.1 30.2 8797 634.5e 30.84 %e 66.70 %
SCZ 939 754.2 23.2 8797 541.0e 30.31 %e 65.30 %
P-valuea     P < 0.001c P < 0.001d P < 0.001d

MENTAL 2189 791.9 15.6 8797 559.0e 30.43 %e 65.70 %
P-valueb     P < 0.001c P < 0.001d P > 0.05

a P-value for disease-specific comparison with BRAIN dataset
b P-value of MENTAL compared to BRAIN dataset
c Kruskal–Wallis Test.
d chi-square test
e Values different from BRAIN dataset

Fig. 3. Characterization and analysis of differentially expressed genes in psychiatric disorders. (A) Petal plots of the seven psychiatric disease datasets, with 
the number in each region representing the number of genes included in the corresponding disease intersection. (B) Percentage of proteins containing disordered 
residues of each length in the seven disease datasets. (C) Percentage of proteins containing at least one disordered binding site in the seven disease datasets and the 
control dataset. (D) Percentage of disordered residues of each length in the seven disease datasets relative to the total number of disordered residues.
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potential, the regulation of ionic transmembrane transporter, and syn-
aptic signaling, etc., which correspond to the molecular functions of 
IDPs in ADHD. The details of the GO analysis were shown in Fig. 4.

3.4.2. KEGG pathway enrichment analysis
The KEGG enrichment analysis showed no significant differences 

between Low Disorder and High Disorder proteins, nor in comparison to 
the KEGG pathways enriched in the MENTAL dataset. Both groups were 
similarly enriched in pathways associated with neurodegenerative dis-
eases, cancer, neuroactive ligand-receptor interactions, as well as 
signaling pathways such as PI3K-Akt, MAPK, and cAMP. The top 10 
KEGG pathways enriched for Low Disorder and High Disorder proteins 
are illustrated in Figs. 5C and 5D.

3.5. Comparison of PPI network between the ’Low Disorder’ and the 
’High Disorder’ proteins

It has been reported that IDPs are important in protein interactions 
due to their high flexibility. To investigate whether IDPs could affect the 
occurrence of psychiatric disorders through protein-protein in-
teractions, we constructed protein interaction networks for proteins in 
Low Disorder and High Disorder datasets, identifying key proteins in the 
protein interaction networks.

The Low Disorder Protein Interaction Network consists of 619 nodes 
and 1455 edges. We filtered the top 50 nodes using the degree algo-
rithm, resulting in a reconstructed network of 50 nodes and 970 edges, 
with an average of 19.4 edges per node. The top three important proteins 
identified are ACTB, AKT1, and KRAS.

Similarly, the High Disorder Protein Interaction Network contains 

605 nodes and 1707 edges. The reconstructed network includes 50 
nodes and 1426 edges, averaging 28.5 edges per node. Key proteins here 
are TP53, CREB1, and CREBBP.

We briefly describe these key node proteins, especially those in the 
High Disorder Protein Interaction Network. The first one is KRAS, which 
is a significant protein in the Low Disorder network, mediates the RAS/ 
MAPK pathway, influencing neuronal growth, proliferation, and central 
nervous system development [49,50]. In the High Disorder network, 
TP53 encodes the P53 protein, an IDP with intrinsically disordered re-
gions crucial for its multifunctionality. The C-terminal domain of P53 
interacts with GSK3, a protein linked to schizophrenia [51–53].

CREB1 and CREBBP are also vital IDPs in the High Disorder network. 
CREB1 encodes a transcription factor, while CREBBP encodes the CREB- 
binding protein, central to eukaryotic transcriptional regulation. The 
pKID domain of CREB interacts with CBP’s KIX domain to trigger gene 
expression [54,55]. A meta-analysis found higher expression levels of 
CREB1 and CREBBP in the Brodmann Area 10 samples from schizo-
phrenia patients compared to controls, and downregulation of CREB1 is 
associated with MDD, SCZ, and BP [28]. Figs. 5A and 5B illustrate the 
protein interaction networks for both datasets.

3.6. Results of LLPS prediction

We used the average prediction scores from three LLPS predictors to 
classify psychiatric disease-related proteins and control proteins into 
LLPS and non-LLPS proteins. The proportions of LLPS proteins in each 
dataset were as follows: ASD (66.20 %), ADHD (59.54 %), ID (45.01 %), 
BP (51.17 %), MENTAL (50.59 %), SCZ (50.59 %), BRAIN (47.41 %), 
MDD (51.91 %), and AD (38.28 %). We compared the LLPS proportions 

Fig. 4. GO functional enrichment of disease genes in different subgroups. (A) Top 5 Biological Process, Cellular Component, and Molecular Function terms for 
genes in the Low Disorder dataset. (B) Top 5 Biological Process, Cellular Component, and Molecular Function terms for genes in the High Disorder dataset. (C) Top 5 
Biological Process, Cellular Component, and Molecular Function terms for genes in the IDPs in ASD. (D) Top 5 Biological Process, Cellular Component, and Molecular 
Function terms for genes in the IDPs in ADHD.
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between psychiatric disease-related proteins and control proteins. The 
results indicated significant differences (P < 0.05), with ASD and ADHD 
showing significantly higher proportions of LLPS proteins compared to 
the control dataset (P < 0.05), while ID had a significantly lower pro-
portion of LLPS proteins (P < 0.05) (Table 3).

3.7. Proportion of IDPs for ASD differential proteins in a cohort study

To validate our findings using real cohort data, we selected a cohort 
of 1141 individuals with ASD. We analyzed 391 statistically significant 
genes identified in this cohort (FDR < 0.1) (Supplementary Table 1). We 
found that the proteins encoded by these genes had a higher proportion 

Fig. 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-Protein Interaction (PPI) analysis in the Low Disorder and the High Disorder datasets. (A) 
Protein-protein interaction networks of the top 50 proteins in the LOW Disorder dataset, sorted in descending order by their degree scores. (B) Protein-protein 
interaction network among the top 50 proteins in the High Disorder dataset. (C) Top 10 KEGG pathways in the Low Disorder dataset were sorted by the number 
of enriched genes. (D) Top 10 KEGG pathways in the High Disorder dataset.

Table 3 
Comparison of LLPS protein percentage in different psychiatric disorders.

Name N Mean SE Maximum Median LLPS protein percentage（（%））

BRAIN 2188 575.8 10.9 4870 441 47.41
AD 68 695.8 72.8 2768 479.5e 38.25
ADHD 307 995.1 54.3 8797 710.0e 59.54e

ASD 143 1033 68.3 4967 708.0e 66.20e

BP 602 753.1 29.2 8797 560.5e 51.17
MDD 512 687.8 28.6 6306 485.5e 51.91
ID 812 921.1 30.2 8797 634.5e 45.01e

SCZ 939 754.2 23.2 8797 541.0e 50.59
P-valuea     P < 0.001c P < 0.001d

MENTAL 2189 791.9 15.6 8797 559.0e 50.59
P-valueb     P < 0.001c P < 0.05d

a P-value for disease-specific comparison with BRAIN dataset
b P-value of MENTAL compared to BRAIN dataset
c Kruskal–Wallis Test.
d chi-square test
e Values different from BRAIN dataset
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of IDPs (76.68 %), which closely aligns with the proportion of IDPs in 
our ASD dataset (75.40 %) and was significantly higher than in the 
BRAIN dataset (P < 0.05) (Supplementary Table 4). Furthermore, 
functional analysis of these IDPs revealed significant enrichment in 
pathways such as regulation of trans-synaptic signaling, modulation of 
chemical synaptic transmission, head development, chromatin remod-
eling, and cell morphogenesis (Supplementary Figure 1). These path-
ways closely resemble those observed in the “High Disorder” proteins 
and LLPS proteins in psychiatric disorders, with head development, 
modulation of chemical synaptic transmission, and cell morphogenesis 
being significantly enriched in all three protein types. These results 
suggest that the differentially expressed proteins in the ASD cohort 
contain a higher proportion of IDPs, consistent with our findings, and 
further emphasize the critical role of IDPs in head development and 
synaptic signaling in ASD.

4. Discussion

Despite the extensive research efforts over the past few decades to 
uncover the pathophysiology of mental diseases [3,54–56], the precise 
molecular mechanisms of psychiatric disorders remain unclear. Previous 
studies have shown that changes in protein disorder properties may be 
associated with the development of a variety of diseases [15,17,57]. Due 
to the diversity and complexity of IDPs, current research on psychiatric 
disorders still focuses on neurotransmitters [58], neuronal pathways 
[59], and gene mutations [56], and few studies have explored the role of 
IDPs in psychiatric disorders. Our study is the first to systematically 
explore functional roles of IDPs in psychiatric disorders.

This paper analyzes the differences in the proportions and functions 
of IDPs across seven psychiatric disorders and normal brain controls. We 
found that psychiatric disorder datasets contained more IDPs than the 
control dataset, suggesting a potential association between IDPs and 
psychiatric disorders, particularly in ASD and ADHD. Previous studies 
indicate that ASD and ADHD share certain common neurological char-
acteristics [60,61], with their underlying neurobiological pathways 
showing remarkable similarities [62–64]. However, our further analysis 
revealed functional differences in IDPs between ASD and ADHD, which 
may be linked to their distinct pathogenic mechanisms. Continued 
research on IDPs in ASD and ADHD will help clarify these differences 
and provide insights for the selection of clinical treatments.

Among the 15 most disordered proteins in our dataset, PPR1B en-
codes for protein phosphatase 1 regulatory subunit 1B, a regulator of 

kinase or phosphatase associated with glutamate and dopamine receptor 
activation. As a target of dopamine, PPR1B is of great relevance to the 
treatment of neurological and mental disorders [65–68]. Furthermore, 
we observed that most IDPs were associated with pathways or structures 
involving chromatin, nuclear membrane, cytoskeleton, neurons, and 
other structures. This finding is consistent with the established role of 
IDPs in synaptic and neuronal processes [69,70]. We also found that 
some IDPs are proven targets of psychiatric drugs, providing insights for 
further elucidating of the mechanism of action of drugs and discovering 
new psychiatric drug targets. These IDPs drug targets are listed in 
Supplementary Table 3.

In addition, our results showed that the proportion of IDPs and LLPS 
in ASD- and ADHD-related proteins was significantly higher than in the 
control dataset. Further comparative analyses revealed a strong corre-
lation between the proportion of disordered residues in disrupted pro-
teins and their LLPS scores (r = 0.71, Fig. 6A). Consistent with the 
functional enrichment results of ’High Disorder’ proteins (Fig. 4B), LLPS 
proteins were also significantly enriched in pathways related to neuron 
projection development, head development, cell morphogenesis, brain 
development, and the modulation of chemical synaptic transmission 
(Fig. 6B). It has been demonstrated that the phase separation ability of 
LLPS is closely linked to its IDR region [25,71], and truncation of the 
IDR can disrupt the protein’s phase separation function [71–74]. 
Therefore, we hypothesize that mutations in IDPs may contribute to 
psychiatric disorders by affecting liquid-liquid phase separation.

Our study has certain limitations. Although databases such as Dis-
GeNET and GeneCards provide rich gene-protein and disease-gene 
likelihood data, there is still a possibility of missing newly identified 
genes linked to mental disorders. Furthermore, changes in gene 
expression levels were not considered in the diseases we studied because 
the databases used did not have information on gene expression levels.

Future work could investigate the aggregation properties of IDRs in 
psychiatric disease-associated proteins. This analysis would include 
parameters such as radius of gyration, end-to-end distance, polymer 
scaling index, and aggregate sphericity. We could also explore the 
impact of conformational changes of IDRs in mental disease-associated 
proteins on the function of full-length proteins. Furthermore, we could 
investigate how these conformational changes of IDRs in mental diseases 
are linked to cellular function, localization, amino acid sequences, 
evolutionary conservation, and disease variation, together with a newly 
released molecular model for generating IDR conformational assemblies 
[75,76].

Fig. 6. Correlation analysis between LLPS Scores and Disordered Residues (%) and functional enrichment of LLPS in mental disease-related proteins. (A) Correlation 
analysis between the Disordered Residues (%) in psychiatric proteins and LLPS Scores of psychiatric proteins. (B) GO functional enrichment of LLPS proteins 
associated with psychiatric disorders.
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In summary, our study contributes to exploring the neurobiological 
mechanisms underlying psychiatric disorders, providing a novel 
perspective from the standpoint of protein disorders. We discuss the 
specific roles and mechanisms of IDPs in psychiatric disorders.
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