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ABSTRACT

The combined effect of shape and electrostatic complementarities (Sc, EC) at the interface of
the interacting protein partners (PPI) serves as the physical basis for such associations and is
a strong determinant of their binding energetics. EnCPdock (https://www.scinetmol.in/
EnCPdock/) presents a comprehensive web platform for the direct conjoint comparative
analyses of complementarity and binding energetics in PPIs. It elegantly interlinks the dual
nature of local (Sc) and nonlocal complementarity (EC) in PPIs using the complementarity
plot. It further derives an AI-based DGbinding with a prediction accuracy comparable to the
state of the art. This book chapter presents a practical manual to conceptualize and imple-
ment EnCPdock with its various features and functionalities, collectively having the potential
to serve as a valuable protein engineering tool in the design of novel protein interfaces.

Keywords: complementarity, complementarity plot, free energy of binding, protein–protein
interaction, structure-based thermodynamics.

1. INTRODUCTION

D esign of novel therapeutic agents and the engineering of proteins with desired functionalities are intercon-
nected forefront of modern biomedical research. On one hand, understanding the thermodynamics and

kinetics of protein–protein interactions (PPIs) is essential in identifying and validating potential drug targets
(Feng et al., 2017), whereas on the other hand, protein–protein-binding energetics play a pivotal role in rational
protein engineering, interface design, and modulation of PPIs (Sable and Jois, 2015). Apart from the applica-
tions, the interaction between protein complexes is also crucial for deciphering their roles in cellular processes,
diseases, mechanisms, and signal transduction pathways (Keskin et al., 2008). A significant portion of the data
concerning protein–protein-binding energetics is encoded within the structural features of protein complexes
(Zhang et al., 2012). The three-dimensional arrangement of proteins within these complexes reveals critical
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insights into the nature and specificity of their interactions, offering a rich source of information for under-
standing the energetic basis of their associations (Bryant et al., 2022).

The interplay between protein–protein-binding energetics and the structural characteristics of PPI com-
plexes has been elucidated with numerous computational approaches. Within the realm of molecular
dynamics simulations, a prominent technique extensively used is the physical effective energy function
(PEEF). PEEF relies on theoretically derived interparticle forces that encompass all atoms within a given
structure of protein complexes (Lazaridis, 2000; Lazaridis and Karplus, 1997). The parameters of PEEF
are typically obtained from small molecule crystal and solvation data, as well as ab initio calculations
(Brooks et al., 1983; MacKerell et al., 1998). However, because of the absence of parametrization from
actual protein structures, the PEEF approach encountered challenges in accurately identifying native pro-
tein folds (Lazaridis and Karplus, 1997). More specifically, as the PEEF is derived from atomic models, it
frequently exhibits a rugged energy surface that lacks a smooth descent when approaching the native state
(Lazaridis and Karplus, 1999).

A statistical effective energy function (SEEF) addresses the limitations of PEEF by using parametriza-
tion from a database of known protein structures to extract statistics related to pair contacts and surface
area burial (Sippl, 1995; Simons et al., 1999). This enables the determination of “pseudo-potentials” for
protein structures or PPIs. SEEF offers advantages over PEEF, including a smoother energy landscape and
reduced sensitivity to small perturbations (Simons et al., 1999). Moreover, its statistical nature allows for
the inclusion of all known and potential physical effects, enhancing its robustness (Thomas and Dill,
1996). However, SEEF may exhibit a lower discriminatory power because of this very robustness (Simons
et al., 1997).

Among other methodologies, a widely used approach involves combining molecular mechanics energy
(MM) with solvation-free energy and configurational entropy (Chen et al., 2016). The molecular MM
incorporates bond, angle, dihedral, electrostatic, and van der Waals energy in the gas phase. Conforma-
tional entropy is typically computed from normal-mode analysis based on a set of conformational snap-
shots obtained from molecular dynamics simulations. Solvation-free energy, on the contrary, is
determined by calculating the change in free energy associated with transferring a molecule from an ideal
gas to a solvent at a specific pressure and temperature (Duarte Ramos Matos et al., 2017). This process con-
siders alterations in solvent accessible surface area (SASA) and electrostatic interactions between the sol-
ute and solvent. The electrostatics part can be determined using either the Generalized Born (GB) model
(Gohlke and Case, 2004) or by solving the finite difference Poisson–Boltzman (PB) equation (Brown and
Muchmore, 2006), which leads to the MM/PBSA and MM/GBSA approaches, respectively. Although
both methods share the entropic, SASA, and molecular mechanics components, their treatment of electro-
statics differs based on the charge model, force field, radius parameter in the continuum solvent model,
and solvent dielectric constant. Generally, MM/PBSA outperforms MM/GBSA in predicting protein–pro-
tein-binding free energies (Chen et al., 2016). However, it is crucial to note that MM/PBSA’s sensitivity to
the dielectric constant of the solute necessitates careful calibration based on the charge distribution of the
binding interface in PPI complexes (Chen et al., 2016).

The usage of artificial intelligence to predict protein–protein-binding affinities is a recent development.
Many approaches focus on determining the changes in binding free energy resulting from one or multiple
mutations in PPI complexes. For instance, mmCSM-PPI (Rodrigues et al., 2021), Geo-PPI (Liu et al.,
2021), TopNetTree (Wang et al., 2020), and PPI-affinity (Romero-Molina et al., 2022) use extra-tree,
gradient-boosting trees and support vector machine (SVM) algorithms to achieve a Pearson’s correlation
coefficients (r) of 0.75, 0.52, 0.79, and 0.78, respectively, between predicted and experimental data (DDG)
for the SKEMPI 2.0 database (Jankauskaite et al., 2019), thereby predicting changes in binding affinity
upon mutations. In the study conducted by Romero-Molina et al., the PPI-affinity method demonstrated a
general applicability for predicting the binding free energy of diverse PPI complexes (Romero-Molina
et al., 2022). The PPI affinity method achieved an r value of 0.62 between experimental and predicted
binding free energies for a training dataset comprising 833 PPI complexes (Test set 1). However, the r
value dropped to 0.50 when evaluated on a separate hold-out test dataset consisting of 90 PPI complexes
(Test set 2) (Romero-Molina et al., 2022). Furthermore, the performance of PP affinity was compared with
other previously available methods to predict the protein–protein-binding affinity on both Test set 1 and
Test set 2. PRODIGY, another method that uses an SEEF approach, exhibited an r value of 0.74 on Test set 1
(on which it was trained), but its performance declined with an r value of 0.31 on Test set 2, indicating potential
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overfitting toward the benchmark dataset (Xue et al., 2016). In addition, DFIRE (Liu et al., 2004), CP_PIE
(Ravikant and Elber, 2010), and ISLAND (Abbasi et al., 2020) displayed r values of 0.10, -0.10, and 0.27,
respectively, on the hold-out dataset (Test set 2). It is noteworthy that all of these available methods use an
SEEF in predicting the protein–protein-binding affinity. Relatively newer approaches of predicting binding
affinity and assessing thermal stability in proteins have also explored analysis of interfacial contact networks
and the spatial organization of hydrophobic and charged residues (Desantis et al., 2022; Vangone and Bonvin,
2015).

On the contrary, EnCPdock (Biswas et al., 2023), trained on a dataset comprising 3200 PPI complexes with
binding free energies calculated using FoldX (Blanco et al., 2018), used a support vector regression approach.
Cross validation of EnCPdock yielded a maximum correlation (rmax) value of 0.745 between the target func-
tion (DGFoldX_norm) and the predicted output (DGEnCPdock_norm), with a corresponding maximum balanced
accuracy (BACC) score of 0.833. Furthermore, EnCPdock’s performance was evaluated on two independent
datasets, namely the Affinity benchmark dataset and the “SKEMPI + PROXiMATE–merged” datasets, com-
prising 106 and 236 binary complexes, respectively. It achieved correlation coefficients of 0.45 and 0.52,
respectively, between the predicted DGEnCPdock_norm and the actual binding free energies for these datasets.
Furthermore, EnCPdock offers more than just an AI-predicted DGbinding; it also provides essential information
such as surface and electrostatic complementarities (Sc, EC), surface area estimates, and other high-level struc-
tural descriptors used as input feature vectors. In addition, EnCPdock delivers a binary PPI complex mapping
in the complementarity plot (CP) (https://en.wikipedia.org/wiki/Complementarity_plot) (Basu et al., 2012)
and generates interactive molecular graphics of the atomic contact network at the interface, along with a con-
tact map for further analysis.

This comprehensive platform facilitates the direct visualization and analysis of specific native interac-
tions (contacts) contributing to binding, offering insights into their stability or transience across a library
of mutants. EnCPdock further furnishes individual feature trends and relative probability estimates
(Prfmax) of the obtained feature scores, providing a valuable tool for targeted protein interface design and
aiding researchers in identifying structural defects, irregularities, and sub-optimality for subsequent rede-
sign. Combining its wide array of features and applications, EnCPdock stands out as a unique online tool
that will undoubtedly benefit structural biologists and researchers across related disciplines. Its capabilities
offer valuable support in studying protein interactions and facilitating the design of dockable peptides,
making it an invaluable resource for the scientific community.

2. MATERIALS

EnCPdock was developed using several external programs for various tasks. The “sc” program, a part of
the CCP4 package (Winn et al., 2011), was used to quantify the shape complementarity at protein–protein
interfaces—measured by directly implementing the original shape correlation statistic (Sc) formulated by
Lawrence and Colman (Lawrence and Colman, 1993). Sc was designed based on the cumulative alignment
of the nearest neighboring dot surface points (unit normal vectors) of the interacting molecular (Connolly)
surfaces (Connolly, 1983) at protein–protein interfaces (binary complexes). On the contrary, the EC func-
tion measures the complementarity of surface electrostatic potential at the protein–protein interacting
surfaces, arising from the distribution of atomic partial charges across the whole molecular complex. For
this purpose, the same molecular (Connolly) surfaces were constructed using EDTSurf (Xu and Zhang,
2009) (at 20 dots/Å2), and the surface electrostatic potentials on these dot surface points were computed by
iteratively solving the PB equation by the finite difference method of DelPhi (Li et al., 2012) implementing
its smoothed Gaussian dielectric function (Li et al., 2013). EC was then computed as the negative correla-
tion of appropriately chosen troughs of surface electrostatic potential values—as detailed in its original
and adapted formulations (Basu et al., 2012; McCoy et al., 1997). The “sc”method, in spite of being some-
what more computationally expensive, was chosen over and above other shape descriptors in docked pro-
tein complexes (e.g., region-based 3D Zernike descriptors [Venkatraman et al., 2009]) because of its
rigorous use of dot surface points, numerical range [-1, 1] that aligns with EC and for being traditionally
used in the CPs (Basu et al., 2012; Basu, 2017; Biswas et al., 2023).

To map a PPI complex based on its fSc, ECg values (treated as an ordered pair), EnCPdock used the dock-
ing scoring version [CPdock (Basu, 2017)] of the two-dimensional CP (Basu et al., 2012). The CP serves as a
visual aid to validate the structural accuracy of atomic models, applicable to both folded globular proteins
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(Basu et al., 2014, 2012) and protein–protein interfaces (Basu, 2017; Basu et al., 2021; Biswas et al., 2023).
The CPdock version of the plot represents Sc and EC of the protein–protein complex attained at their interface
on the X-axis and Y-axis, respectively. For training, EnCPdock implemented a support vector regression
machine with a radial basis function kernel, distributed as SVMlight (Joachims, 2002). The binding free energy
(DGbinding) of the PPI complexes in the training and test datasets was determined using the standalone version
(v.4) of FoldX (http://foldxsuite.crg.eu/) (Schymkowitz et al., 2005), which follows a “fragment-based strat-
egy” using fragment libraries similar to the “fragment assembly simulated annealing” technique for protein
structure prediction (Kandathil et al., 2018; Simons et al., 1997). Atoms that underwent a net change (nonzero)
in SASA upon binding were identified as atoms at the protein–protein interface, wherein theDASAwas calcu-
lated by NACCESS (Hubbard and Thornton, 1993) with a probe size of 1.4 Å, representing the hydrodynamic
radius of water.

3. METHODS

3.1. Input Feature Vectors

EnCPdock’s training involves the use of 13 input feature vectors, which serve as high-level, fine-grained
structural descriptors for the overall protein complex or the protein–protein interface. These 13 structural fea-
tures used in building EnCPdock can be broadly categorized into four groups. The first group comprises com-
plementarity descriptors (Sc, EC), followed by accessibility descriptors (nBSA, nBSAp, nBSAnp, fracI) in the
second group. The third group encompasses interfacial contact network descriptors (Ld, ACI, slopedd, Yin-
terdd, CCpdd), whereas the fourth group consists of size descriptors (logN, logasp). The SVM predictor is
trained on the combination of all different (13) features, and, any correction or compensation for a disadvant-
age because of one or more features is done inherently by rest of the features. The definitions of each of these
features are as follows.

3.1.1. Complementarity descriptors. First and foremost, the parameter Sc, known as shape (or sur-
face) complementarity (Lawrence and Colman, 1993), assesses the extent of topographical correlation (or,
conjointness) between the molecular surfaces of two proteins at their interface. The interface is defined as
the region where both proteins interact, remaining shielded from the solvent. When the Sc value is 1, it sig-
nifies that the molecular surfaces mesh precisely, indicating a strong (perfect) correlation. Conversely, an
Sc value of 0 indicates that the surfaces of interest are not at all topographically correlated, whereas a nega-
tive Sc is indicative of anticorrelation, often resulting from short contacts. Sc is calculated using the fol-
lowing formula:

S a; bð Þ = na:nbe -w:d2ab ; Sc =medianfSg
where na and nb are two unit normal normal vectors (outwardly and inwardly oriented, respectively) cor-

responding to the two nearest neighboring dot surface points taken orderly (target? neighbor), located at
dot surface points a and b on the two interacting surfaces, whereas dab is the distance between the two
points. The specified parameter (S[a,b]) is computed for every nearest neighboring ordered pair of points
(a,b) located on the interacting surfaces contributed by the two partner proteins, whereas w is a scaling con-
stant, traditionally set to 0.5 (Lawrence and Colman, 1993). The ultimate shape complementarity value
(for a specified target? neighbor pair of interacting surfaces) is determined as the median of this distribu-
tion for its left-skewness. The semi-empirical correlation statistic (Sc) is so designed that the effect of the
short range van der Waals forces is precisely captured in a threshold-dependent manner (S[a,b]*0 at
dab*3.5 Å2 even for perfectly aligned unit normal vectors: na.nb=1), by and large, accounting only for the
relative alignment of the unit normal vectors originating from the proximal nearest neighboring points
(Banerjee et al., 2003; Lawrence and Colman, 1993).

Complementarity at macro-molecular (e.g., protein) interfaces duels well beyond the local shape effects
(captured by Sc) wherein the nonlocal complementarity is electrostatic in nature. To that end, EC is yet another
crucial feature that measures the extent of anticorrrelation in surface electrostatic potentials at the two interact-
ing surfaces arising from the distribution of atomic partial charges across the whole molecular complex
(McCoy et al., 1997). A positive value of EC (trending to +1) indicates a good match (anticorrelation) in sur-
face electrostatic potentials between the two interacting surfaces, indicating strong complementarity. Con-
versely, a negative value of EC (trending to -1) suggests a similar (and hence not complementary) surface
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electrostatic potentials of the two partners at their interface. Mathematically, EC is taken as the negative of the
Pearson’s correlation of corresponding surface electrostatic potentials (Biswas et al., 2023; McCoy et al.,
1997), represented by the following expression:

EC = -
+

N

i = 1
w ið Þ- w
� �

w 0 ið Þ - w 0� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

N

i = 1
w ið Þ - w
� �2+N

i = 1
w 0 ið Þ- w 0
� �2� �r

whereu ið Þ is the potential realized on the ith interfacial dot surface point because of its own atoms andu0 ið Þ
because of the atoms of the partner (protein) molecule, u and u0 are the mean potentials of u ið Þ i= 1, 2, . . ., N,
and u0 ið Þ i= 1, 2, . . ., N, respectively (for a given interfacial surface consisting of a total of N dot surface
points).

Both Sc and EC are thus correlation functions having similar trends, and identical ranges [-1, 1], and, are
not necessarily reciprocative in nature. Hence, in both cases, the correlations are computed twice (once by tak-
ing each interacting surface as the target and its partner as the neighbor) followed by taking their arithmetic
mean (Lawrence and Colman, 1993; McCoy et al., 1997).

3.1.2. Accessibility descriptors. Upon the formation of a protein complex, certain regions of the
molecular surfaces from both partner proteins become less accessible to the solvent because of their interac-
tion. To quantify this change in SASA, we employ the concept of normalized buried surface area (nBSA) using
the following formula:

nBSA =
+

A

i = 1
DASA ið Þ ++B

i = 1
DASA ið Þ

+
A +B

i = 1
DASA ið Þ

Here,
PA

i = 1 DASA ið Þ and PB
i = 1 DASA ið Þ represent the net change in SASA for all the atoms of protein A

and B, respectively, before and after the complex formation. The resulting value is then normalized by the total
change in SASA that occurs when partners A and B form the complex. During the computation of nBSA, the
alteration in SASA [DASA(i)] is taken into account for all types of atoms. However, to determine the distinct
contributions from polar and nonpolar atoms, we separately calculate the changes in SASA for each group,
which are termed nBSAp and nBSAnp, respectively.

Another significant accessibility-based feature in the context of PPIs is fracI. This feature can be defined as
the ratio of number of interfacial residues to the total number of residues contributed by both interacting pro-
tein partners (PPI) (as follows).

fracI =
Nintres

Ntot

Here, Nintres represents the number of interfacial residues, whereas Ntot corresponds to the total number of
residues within the protein–protein complex.

3.1.3. Interfacial contact network descriptors. In addition to the complementarity and accessibility-
based features, there are also network-based features. When a receptor and a ligand form a complex, it results
in a contact interaction between the interfacial residues contributed by both partners at their interface. The cri-
teria for residues being in contact with each other involve having any non-hydrogen atom from one residue
within a distance of 4 Å from that of another residue. Residues are connected with a link if they are contributed
by the two interacting partners and are in contact with each other. By observing the contact map, one can visu-
alize the interactions between residues from the two interacting PPI. A crucial factor concerning the contact
network of a PPI complex is the link density (Ld). This parameter is defined as the ratio of the actual number of
contacts between the receptor and the ligand to the theoretical maximum number of contacts that can occur
between them. To elaborate, if the receptor and the ligand have N1 and N2 interfacial residues in physical con-
tact with one or more residues from their partner molecules, and Nicnt is the count of interchain inter-residue
contacts formed at the receptor–ligand interface, then Ld can be expressed as follows:

Ld =
Nicnt

N1 ·N2
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D
ow

nl
oa

de
d 

by
 U

SB
 K

ol
n 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
09

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



It is to be noted that by definition, the PPI contact networks would be bi-partite. Although Ld provides
insight into the overall number of contacts formed among the maximum possible contacts, the average contact
intensity (ACI) (defined by the following expression) assesses the average strength of contact interactions for
each inter-residue interchain link formed at the interface. To calculate the average strength, the number of
interatomic (inter-residue, interchain) contacts atcon(i) formed by each (ith) link was summed up and divided
by the total number of interfacial links (Nicnt) formed in the bi-partite PPI network.

ACI =
+

Nicnt

i
atcon ið Þ
Nicnt

It is worth noting that when the receptor and the ligand have N1 and N2 interfacial residues in physical
contact with one or more residues from their partner molecules, the resulting adjacency matrix will consist
of N1·N2 elements. If two residues, i from the receptor and j from the ligand, actually form a contact, the
(i, j)-th element of the adjacency matrix will be 1; otherwise, it will be 0. In brief, the adjacency matrix pro-
vides a visual representation of which residues from the receptor form contact with specific residues from
the ligand. If a particular residue (or node) from the receptor establishes contact with n residues from the
ligand individually, then the degree (or connectivity) of that specific residue or node from the receptor will
be n. When we plot the frequencies converted to a log scale (Y-axis) against the degrees converted to a log
scale (X-axis), a degree distribution graph for a PPI complex is obtained. According to the power law, this
degree distribution profile can be represented by a straight line, characterized by a specific slope (slopedd)
and a specific intercept (Yinterdd). These two parameters, slopedd and Yinterdd, hold significance in inter-
preting the patterns in the degree distribution graph for PPI complexes. To obtain the expected y-value
(Yexp; logarithmic frequency value) for each observed x-value (logarithm of degree for each node), we use
the relation provided below.

Yexp = slopeddXobs + Yinterdd

The corresponding observed ordinate (Yobs) is also obtained. The Pearson’s correlation coefficient between
Yexp and Yobs, termed as CCpdd, serves as an interesting feature in understanding the degree distribution profile
of protein contact networks. The CCpdd can be calculated using the following formula,

CCpdd =
cov Yexp;Yobsð Þ
r Yexpð Þr Yobsð Þ

Here, cov Yexp; Yobsð Þ represents the covariance between parameters Yexp and Yobs, whereas r Yexpð Þ and
r Yobsð Þ are variance of the expected and observed ordinates.

3.1.4. Size descriptors. Two distinct features were constructed based on the chain lengths of the inter-
acting protein partners. The molecule with the longer chain is referred to as the receptor, whereas the one with
the shorter chain is designated as the ligand. If the chain length of the receptor is represented by lenR and that
of the ligandmolecule by lenL, the logarithm of their combined length is denoted as logN, and the logarithm of
their length ratio is termed as logasp (analogous to an aspect ratio). These two parameters, calculated using the
following formulas, together formulas, together takes into account the relative and absolute sizes (in terms of
chain length—which could in turn be interpreted as molecular mass) of the molecular complex.

logN = log10 lenR + lenLð Þ

logasp = log10
lenR
lenL

� �

3.2. Training and Performance

EnCPdock was trained on a dataset comprising 3200 binary PPI complexes with high resolution (better than
or equal to 2 Å) crystal structures, curated from the RCSB PDB (Berman et al., 2000) database. The details of
the curation can be found in the original EnCPdock article (Biswas et al., 2023). The free energy of binding
(DGbinding) for each complex was calculated using the standalone version (v.4) of FoldX (Blanco et al., 2018).
Importantly, the DGbinding value was normalized by the number of interfacial residues in each case. Input feature
vectors were computed for these PPI complexes using a combination of external (as detailed above) and in-built
programs written in FORTRAN90, PERL (v5.26.1), PYTHON3.6 along with BASH scripts—as per
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requirement. With the FoldX-derived and normalized DGbinding value (taken as the target function) and the 13
input feature vectors, EnCPdock was trained using the radial basis function kernel of the SVMlight module, with
10-fold cross validation to predict normalized DGbinding for each PPI complex in the database. A maximum cor-
relation of r = 0.745 was obtained between the predictedDGbinding and FoldX derivedDGbinding during cross val-
idation, and the 90 models1 that exhibited correlation of r = 0.745, were further utilized in the independent
validation.

The independent validationwas performed on three independent datasets with experimentally determined bind-
ing free energy: an affinity benchmark dataset (Kastritis et al., 2011; Vreven et al., 2015) containing 106 PPI com-
plexes and another dataset combining PROXiMATE (Jemimah et al., 2017) and SKEMPI (Jankauskaite et al.,
2019) consisting of 236 PPI complexes. The binding free energy for each complex in these datasets was predicted
using the 90 models, and the median of the 90 predicted values was taken as the predicted binding free energy
from EnCPdock. The correlation coefficients for the predicted binding free energy and the experimental binding
free energy (obtained from the database) were found to be 0.48 and 0.63 for the affinity benchmark and “SKEMPI
+ PROXiMATE-merged” datasets, respectively. These correlation coefficients in predictingDGbinding are compa-
rable to other state-of-the-art methods for predicting binding free energy-as detailed in the original EnCPdock
article (Biswas et al., 2023). In addition to the binding free energy, EnCPdock provides other valuable information
about the binding and interface properties of the PPI complex—to be discussed in subsequent sections.

3.3. Output Features

The EnCPdock server serves as a user-friendly web interface, available at https://scinetmol.in/EnCPdock/,
designed for the comprehensive analysis of complementarity and binding energetics in protein associations.
To utilize the EnCPdock server, one must first obtain a PDB structure of a binary PPI complex. Users have the
option to fetch experimental structures (of protein–protein/peptide complexes) directly from the RCSB PDB
database (Fig. 1A) by providing their 4-letter PDB Ids or alternatively upload their own coordinate file(s) writ-
ten in the brookhaven (PDB) format (https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/manual/
manappb.html). As the provided PPI complex might consist of multiple chains, it becomes essential to care-
fully select the chain names as they are identified in the provided PDB file (Fig. 1B). We recommend users
view the structure in any molecular viewer to accurately identify the correct chains and provide this informa-
tion to the EnCPdock server at the next step. Upon providing all the necessary information, the EnCPdock
server will process the data, which may take some time (*1–2 min on average). Subsequently, the server will
furnish its analysis of the given PPI complex in four distinct panels. In the forthcoming section, we will delve
into each of the four panels separately, illustrated with an example PPI complex.

3.3.1. Scores and plots. The default first panel in the EnCPdock server provides essential insights into
the complementarity and binding energetics of the given PPI complex. On the right-hand side of this panel,
users can find the Sc and EC values hit by the specified complex (Fig., 2, item 1) along with the scores obtained
for the other input feature vectors. In addition, the mapping (location) of the query structure on the CPdock is
presented (Fig. 2, item 2). CPdock (Basu, 2017) is constructed based on a probabilistic representation of pre-
ferred amino acid side-chain orientations, delineated into three regions on the plot: “probable,” “less proba-
ble,” and “improbable.” These regions are color-coded with “purple,” “mauve,” and “sky-blue,” respectively
(Basu et al., 2014). For the provided example PPI complex (PDB ID: 1Z0K), an Sc value of 0.699 is indicated,
which is considered very good, whereas the EC value of 0.119 is characterized as moderate since both Sc and
EC range from -1 to +1. Notably, the location of the given PPI complex on CPdock is depicted as a black point,
positioned in the “probable” region of the plot. This placement suggests a favorable structural configuration in
terms of complementarity (local and non-local—combined) for the provided complex.

Furthermore, on the left-hand side of this default first panel, users can find the values of the 13 input fea-
ture vectors tabulated (Fig. 2, item 3), encompassing various categories such as complementarity-based,
surface area-based, degree distribution profile-based, and length-based features. For instance, in the given
example (PDB ID: 1Z0K), the attained nBSA value is 0.166, indicating approximately 16.6% decrease in
solvent-accessible surface area upon binding (complexation). Likewise, the nBSAp and nBSAnp values
(0.155, 0.175, respectively) imply the fraction of polar and nonpolar surface getting buried upon complex-
ation. Furthermore, the fracI value of 0.217 signifies that around 21.7% of the total residues from both

1Top 9 sets hitting the same highest correlation of r=0.745 · 10 models for the ten-fold cross validation (for each set)

ENCPDOCK – A PRACTICAL MANUAL 775

D
ow

nl
oa

de
d 

by
 U

SB
 K

ol
n 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
09

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://scinetmol.in/EnCPdock/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/manual/manappb.html
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/manual/manappb.html


chain A and chain B are interfacial residues. Among the network parameters, the Ld value of 0.105 indi-
cates that 10.5% of all possible contacts between the interfacial residues of the two interacting chains have
actually formed in the query PPI complex. In addition, the ACI value of 2.889 reveals that, on average,
*3 interatomic contacts had formed for each inter-residue interchain link in the given PPI complex.

Moreover, from the degree distribution profile of the PPI complex, the obtained values for slopedd and
Yinterdd are -1.545 and -0.545 for the given PPI complex, respectively. Together, the slope and the Y-
intercept of the degree distribution profile reflect the extent of scale freeness (Choroma�nski et al., 2013) of
networks (i.e., preferential attachments of new nodes to already existing high-degree nodes in a network)
suggestive of hub-like nodes (attractant) in the network. Specifically, a negative slopedd of around this
magnitude (*1.6) signatures for approaching scale freeness in power-law (degree) distributions (i.e., c*
2–3 in Y = k.X-c). This may be practically relevant for targeted interface design. Using these slopedd and

FIG. 1. Workflow for utilizing the EnCPdock server. (a) Fetching or uploading input coordinate file(s) for the
desired protein complex. (b) Selection of a pair of chains (binary interaction) from the complex.

FIG. 2. Overview of EnCPdock analysis regarding complementarity and binding energetics for a PPI complex. 1.
The server provides the values of Sc and EC for the given protein–protein interaction (PPI) complex, 2. The location
of the query PPI complex is indicated in the complementarity plot, 3. The server presents the calculated values of all
input feature vectors for the given complex, 4. Information regarding chain lengths and the number of interfacial resi-
dues is included, 5. The normalized and total binding free energy predicted by EnCPdock for the given PPI complex is
also provided. EC, electrostatic complementarity; PPI, protein–protein interaction; Sc, shape complementarity.
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Yinterdd values, one can determine an expected ordinate (Yexp) for each observed abscissa (Xobs) and
thereby a goodness of fit (CCpdd; -0.987 for the given complex) between the expected and the observed
ordinates (Yexp, Yobs). Furthermore, the logN and logasp values are found to be 2.362 and 0.443, respec-
tively, providing additional insights into the absolute and comparative size of the binding partners in the
given PPI complex. From this, the intuitive shape of the binding partners (analogous to an aspect ratio) and
the complex can be guessed. In addition, the “Scores and Plots” panel also directly returns the individual
chain lengths of the receptor and the ligand and the number of interfacial residues (item 4, Fig. 2). Finally,
EnCPdock provides the normalized and total DGbinding values (-0.182 and -5.835 kcal.mole-1 for the
given complex)—the latter of which can simply be obtained by multiplying the former with the total num-
ber of interfacial residues (item 5, Fig. 2).

3.3.2. Molecular graphics, contact maps, and feature trends. In the second panel dedicated to
molecular graphics, one can interactively explore the interaction between the two partners using JSmol. Both
chains can be displayed in different colors, with protein chains shown in a cartoon representation and interface
residues represented with ball and stick models. The visualization includes red lines connecting atoms in con-
tact with each other (Fig. 3A). The structure is easily rotatable and can be oriented for optimal viewing. To
obtain high-resolution still images of specific orientations of the complex, one may right-click on the window
and follow the options: File > Export > Export PNG image.

The contact map panel illustrates interactions between residues from the interacting PPI (Fig. 3B). In the
marked portion of the figure, one can observe that six atoms from residue number 26 in chain A (receptor)
interact with any heavy atoms from residue number 444 in chain B (ligand). Notably, residue 26 in chain A is
histidine, whereas residue 444 in chain B is lysine. The right-most column indicates the total number of atomic
pairs in contact with each other from the given two residues (Fig. 3B). Adjacency matrices can then be derived
from the contact map for subsequent network analyses.

The fourth panel (Fig. 4) showcases the feature trends for each high-level structural descriptor utilized
as input feature vectors during EnCPdock training. It presents their respective native kernel density distri-
butions and calculates the relative probabilities of each feature score in relation to the event with the high-
est observed frequency for that specific feature (Prfmax). These relative probability estimates provide
insights into whether an input PPI complex is categorized as regular (common) or terminal (rare) cases
based on the acquired feature scores for each descriptor. This functionality is purposely designed to facili-
tate various tasks such as structural tinkering, intervention, targeted design of protein interfaces, muta-
tional studies, and peptide design.

FIG. 3. Visualization of protein surface interaction and contact map. (a) Two interacting protein molecules are
depicted in different colors. The interfacial residues are represented with ball and stick models, and interatomic interchain
links between residues are shown in red lines. (b) The contact map is presented in a tabulated form. The first and second
columns display the nodes (in <“residue number”–“residue type”–“chain ID”> format) coming from the first and second
chains (alphanumerically sorted), respectively, that are in contact (i.e., connected by a link). The third column indicates
the total number of interatomic contacts (i.e., contact intensity) for each inter-residue interchain (i.e., interfacial) link.
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Moreover, a download button is conveniently placed on the top right tab bar, allowing users to easily down-
load the entire OUTPUT folder (zipped) for local analyses and local visualization purposes.

4. CONCLUSION

In conclusion, EnCPdock was developed with the primary aim of creating an extensive web interface for
conducting comprehensive comparative analyses of physicochemically relevant high-level structural
descriptors, with a particular focus on complementarity, and the binding energetics of interacting PPI.
With this broad objective in mind, the current version of the web server provides detailed interface proper-
ties of binary PPI complexes, encompassing complementarity and other high-level structural features. In
addition, it offers predictive capabilities for the free energies of binding, including both average interfacial
contribution and total values, derived from atomic coordinates. Furthermore, the web server allows users
to generate mobile molecular graphics using JSmol, enabling them to explore the interfacial atomic contact
network and access the contact map of the interface. Moreover, users have the opportunity to analyze
trends of individual features (Sc, Ld, etc.) against their native (kernel density) distributions. This analytical
capability proves to be beneficial for structural tinkering and intervention, applicable to the comparison of
docked poses and the interface design of targeted complexes. For demonstrative case studies presenting
specific applications of EnCPdock (for example, in probing peptide-binding specificity and mutational
effects), the readers are requested to read the original EnCPdock article (Biswas et al., 2023). In summary,
EnCPdock presents itself as a powerful tool in the field of structural bioinformatics, empowering research-
ers to conduct in-depth investigations into protein–protein/peptide interactions and their associated bind-
ing energetics. Its user-friendly interface, comprehensive analyses, and visualization options make it a

FIG. 4. Relative probability estimates for input feature vectors in the given protein–protein interaction (PPI) com-
plex. The red point represents the relative probability estimate for the 13 input feature vectors in the given PPI com-
plex. The corresponding value on the X-axis is indicated by an orange line extending from the point to the X-axis. The
background depicts the relative probability density distribution for the same 13 features in the training dataset.
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valuable asset for advancing our understanding of protein interactions and supporting various applications,
including drug discovery and protein interface engineering efforts.
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